altdss.GrowthShape

Contents

altdss.GrowthShape#

Module Contents#

Classes#

GrowthShape

GrowthShapeBatch

GrowthShapeBatchProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

GrowthShapeProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

IGrowthShape

API#

class altdss.GrowthShape.GrowthShape(api_util, ptr)#

Bases: altdss.DSSObj.DSSObj

CSVFile: str#

‘property(…)’

Switch input of growth curve data to a csv file containing (year, mult) points, one per line.

DSS property name: CSVFile, DSS property index: 4.

DblFile: str#

‘property(…)’

Switch input of growth curve data to a binary file of doubles containing (year, mult) points, packed one after another.

DSS property name: DblFile, DSS property index: 6.

FullName() str#
Like(value: AnyStr)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 7.

Mult: altdss.types.Float64Array#

‘property(…)’

Array of growth multiplier values, or a text file spec, corresponding to the year values. Enter the multiplier by which you would multiply the previous year’s load to get the present year’s.

Examples:

Year = [1, 2, 5] Mult=[1.05, 1.025, 1.02]. Year= (File=years.txt) Mult= (file=mults.txt).

Text files contain one value per line.

DSS property name: Mult, DSS property index: 3.

NPts: int#

‘property(…)’

Number of points to expect in subsequent vector.

DSS property name: NPts, DSS property index: 1.

property Name: str#
SngFile: str#

‘property(…)’

Switch input of growth curve data to a binary file of singles containing (year, mult) points, packed one after another.

DSS property name: SngFile, DSS property index: 5.

Year: altdss.types.Float64Array#

‘property(…)’

Array of year values, or a text file spec, corresponding to the multipliers. Enter only those years where the growth changes. May be any integer sequence – just so it is consistent. See help on Mult.

DSS property name: Year, DSS property index: 2.

__hash__()#

Return hash(self).

__init__(api_util, ptr)#
__ne__(other)#

Return self!=value.

__repr__()#

Return repr(self).

begin_edit() None#

Marks a DSS object for editing

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.GrowthShape.GrowthShapeProperties]) altdss.GrowthShape.GrowthShape#

Edit this GrowthShape.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS Edit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing state of a DSS object

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns an element’s data as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features.

By default (options = 0), only the properties explicitly set. The properties are returned in the order they are set in the input. As a reminder, OpenDSS is sensitive to the order of the properties.

The options bit-flags are available in the DSSJSONFlags enum. Values used by this function are:

  • Full: if set, all properties are returned, ordered by property index instead.

  • SkipRedundant: if used with Full, all properties except redundant and unused ones are returned.

  • EnumAsInt: enumerated properties are returned as integer values instead of strings.

  • FullNames: any element reference will use the full name ({class name}.{element name}) even if not required.

  • Pretty: more whitespace is used in the output for a “prettier” format.

  • SkipDSSClass: do not add the “DSSClass” property to the JSON objects.

NOT IMPLEMENTED YET:

  • State: include run-time state information

  • Debug: include debug information

Other bit-flags are reserved for future uses. Please use DSSJSONFlags enum to avoid potential conflicts.

(API Extension)

class altdss.GrowthShape.GrowthShapeBatch(api_util, **kwargs)#

Bases: altdss.Batch.DSSBatch

CSVFile: List[str]#

‘property(…)’

Switch input of growth curve data to a csv file containing (year, mult) points, one per line.

DSS property name: CSVFile, DSS property index: 4.

DblFile: List[str]#

‘property(…)’

Switch input of growth curve data to a binary file of doubles containing (year, mult) points, packed one after another.

DSS property name: DblFile, DSS property index: 6.

FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 7.

Mult: List[altdss.types.Float64Array]#

‘property(…)’

Array of growth multiplier values, or a text file spec, corresponding to the year values. Enter the multiplier by which you would multiply the previous year’s load to get the present year’s.

Examples:

Year = [1, 2, 5] Mult=[1.05, 1.025, 1.02]. Year= (File=years.txt) Mult= (file=mults.txt).

Text files contain one value per line.

DSS property name: Mult, DSS property index: 3.

NPts: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of points to expect in subsequent vector.

DSS property name: NPts, DSS property index: 1.

property Name: List[str]#
SngFile: List[str]#

‘property(…)’

Switch input of growth curve data to a binary file of singles containing (year, mult) points, packed one after another.

DSS property name: SngFile, DSS property index: 5.

Year: List[altdss.types.Float64Array]#

‘property(…)’

Array of year values, or a text file spec, corresponding to the multipliers. Enter only those years where the growth changes. May be any integer sequence – just so it is consistent. See help on Mult.

DSS property name: Year, DSS property index: 2.

__call__()#
__getitem__(idx0) altdss.DSSObj.DSSObj#

Get element at 0-based index of the batch pointer array

__init__(api_util, **kwargs)#
__iter__()#
__len__() int#
batch(**kwargs) altdss.Batch.DSSBatch#

Filter a batch using integer or float DSS properties, returning a new batch.

For integers, provide a single value to match.

For floats, provide a range as a 2-valued tuple/list (min value, max value), or an exact value to value (not recommended).

Multiple properties can be listed to allow filtering various conditions.

Example for loads:

    # Create an initial batch using a regular expression
    abc_loads = altdss.Load.batch(re=r'^abc.*$') # a batch of all loads with names starting with "abc"
    abc_loads_filtered = abc_loads.batch(Class=1, Phases=1, kV=(0.1, 1.0))

    # Create an initial batch, already filtered
    abc_loads_filtered = altdss.Load.batch(re=r'^abc.*$', Class=1, Phases=1, kV=(0.1, 1.0))
begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.GrowthShape.GrowthShapeBatchProperties]) altdss.GrowthShape.GrowthShapeBatch#

Edit this GrowthShape batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#
class altdss.GrowthShape.GrowthShapeBatchProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

CSVFile: Union[AnyStr, List[AnyStr]]#

None

DblFile: Union[AnyStr, List[AnyStr]]#

None

Like: AnyStr#

None

Mult: altdss.types.Float64Array#

None

NPts: Union[int, altdss.types.Int32Array]#

None

SngFile: Union[AnyStr, List[AnyStr]]#

None

Year: altdss.types.Float64Array#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

keys()#

D.keys() -> a set-like object providing a view on D’s keys

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values

class altdss.GrowthShape.GrowthShapeProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

CSVFile: AnyStr#

None

DblFile: AnyStr#

None

Like: AnyStr#

None

Mult: altdss.types.Float64Array#

None

NPts: int#

None

SngFile: AnyStr#

None

Year: altdss.types.Float64Array#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

keys()#

D.keys() -> a set-like object providing a view on D’s keys

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values

class altdss.GrowthShape.IGrowthShape(iobj)#

Bases: altdss.DSSObj.IDSSObj, altdss.GrowthShape.GrowthShapeBatch

CSVFile: List[str]#

‘property(…)’

Switch input of growth curve data to a csv file containing (year, mult) points, one per line.

DSS property name: CSVFile, DSS property index: 4.

DblFile: List[str]#

‘property(…)’

Switch input of growth curve data to a binary file of doubles containing (year, mult) points, packed one after another.

DSS property name: DblFile, DSS property index: 6.

FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 7.

Mult: List[altdss.types.Float64Array]#

‘property(…)’

Array of growth multiplier values, or a text file spec, corresponding to the year values. Enter the multiplier by which you would multiply the previous year’s load to get the present year’s.

Examples:

Year = [1, 2, 5] Mult=[1.05, 1.025, 1.02]. Year= (File=years.txt) Mult= (file=mults.txt).

Text files contain one value per line.

DSS property name: Mult, DSS property index: 3.

NPts: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of points to expect in subsequent vector.

DSS property name: NPts, DSS property index: 1.

property Name: List[str]#
SngFile: List[str]#

‘property(…)’

Switch input of growth curve data to a binary file of singles containing (year, mult) points, packed one after another.

DSS property name: SngFile, DSS property index: 5.

Year: List[altdss.types.Float64Array]#

‘property(…)’

Array of year values, or a text file spec, corresponding to the multipliers. Enter only those years where the growth changes. May be any integer sequence – just so it is consistent. See help on Mult.

DSS property name: Year, DSS property index: 2.

__call__()#
__contains__(name: str) bool#
__getitem__(name_or_idx)#
__init__(iobj)#
__iter__()#
__len__() int#
batch(**kwargs)#

Creates a new batch handler of (existing) objects

batch_new(names: Optional[List[AnyStr]] = None, *, df=None, count: Optional[int] = None, begin_edit: Optional[bool] = None, **kwargs: typing_extensions.Unpack[altdss.GrowthShape.GrowthShapeBatchProperties]) altdss.GrowthShape.GrowthShapeBatch#

Creates a new batch of GrowthShape objects

Either names, count or df is required.

Parameters:
  • begin_edit – The argument begin_edit indicates if the user want to leave the elements in the edit state, and requires a call to end_edit() or equivalent. The default begin_edit is set to None. With None, the behavior will be adjusted according the default of how the batch is created.

  • **kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

  • names – When using a list of names, each new object will match the names from this list. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • count – When using count, new objects will be created with based on a random prefix, with an increasing integer up to count. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • df – Currently EXPERIMENTAL AND LIMITED, tries to get the columns from a dataframe to populate the names and the DSS properties. begin_edit defaults to False.

Returns:

Returns the new batch of DSS objects, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.GrowthShape.GrowthShapeBatchProperties]) altdss.GrowthShape.GrowthShapeBatch#

Edit this GrowthShape batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

find(name_or_idx: Union[AnyStr, int]) altdss.DSSObj.DSSObj#

Returns an object from the collection by name or index; the index must be zero-based.

new(name: AnyStr, *, begin_edit: Optional[bool] = None, activate=False, **kwargs: typing_extensions.Unpack[altdss.GrowthShape.GrowthShapeProperties]) altdss.GrowthShape.GrowthShape#

Creates a new GrowthShape.

Parameters:
  • name – The object’s name is a required positional argument.

  • activate – Activation (setting activate to true) is useful for integration with the classic API, and some internal OpenDSS commands. If you interact with this object only via the Alt API, no need to activate it (due to performance costs).

  • begin_edit – This controls how the edit context is left after the object creation:

  • True: The object will be left in the edit state, requiring an end_edit call or equivalent.

  • False: No edit context is started.

  • None: If no properties are passed as keyword arguments, the object will be left in the edit state (assumes the user will fill the properties from Python attributes). Otherwise, the internal edit context will be finalized.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns the new DSS object, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#