altdss.Vsource

Contents

altdss.Vsource#

Module Contents#

Classes#

IVsource

Vsource

VsourceBatch

VsourceBatchProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

VsourceProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

API#

class altdss.Vsource.IVsource(iobj)#

Bases: altdss.DSSObj.IDSSObj, altdss.Vsource.VsourceBatch

Angle: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Phase angle in degrees of first phase: e.g.,Angle=10.3

DSS property name: Angle, DSS property index: 4.

BaseFreq: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 33.

BaseMVA: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default value is 100. Base used to convert values specified with puZ1, puZ0, and puZ2 properties to ohms on kV base specified by BasekV property.

DSS property name: BaseMVA, DSS property index: 26.

BasekV: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Source kV, usually phase-phase (L-L) unless you are making a positive-sequence model or 1-phase modelin which case, it will be phase-neutral (L-N) kV.

DSS property name: BasekV, DSS property index: 2.

Bus1: List[str]#

‘property(…)’

Name of bus to which the main terminal (1) is connected. bus1=busname bus1=busname.1.2.3

The VSOURCE object is a two-terminal voltage source (thevenin equivalent). Bus2 defaults to Bus1 with all phases connected to ground (node 0) unless previously specified. This is a Yg connection. If you want something different, define the Bus2 property explicitly.

DSS property name: Bus1, DSS property index: 1.

Bus2: List[str]#

‘property(…)’

Name of bus to which 2nd terminal is connected. bus2=busname bus2=busname.1.2.3

Default is Bus1.0.0.0 (grounded wye connection)

DSS property name: Bus2, DSS property index: 19.

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

CurrentsMagAng() altdss.types.Float64Array#

Currents in magnitude, angle (degrees) format as a array of doubles.

Original COM help: https://opendss.epri.com/CurrentsMagAng.html

Daily: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DAILY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Sets Yearly curve if it is not already defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Daily, DSS property index: 28.

Daily_str: List[str]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DAILY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Sets Yearly curve if it is not already defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Daily, DSS property index: 28.

Duty: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DUTYCYCLE-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Defaults to Daily load shape when Daily is defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Duty, DSS property index: 29.

Duty_str: List[str]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DUTYCYCLE-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Defaults to Daily load shape when Daily is defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Duty, DSS property index: 29.

Enabled: List[bool]#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 34.

EnergyMeter() List[altdss.DSSObj.DSSObj]#
EnergyMeterName() List[str]#
Frequency: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Source frequency. Defaults to system default base frequency.

DSS property name: Frequency, DSS property index: 5.

FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

GUID() List[str]#

GUID/UUID for each object. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

Handle() altdss.types.Int32Array#

Index of each element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() altdss.types.BoolArray#

For each element in the batch: returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() altdss.types.BoolArray#

For each element in the batch: returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

Isc1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. single-phase short circuit current, amps. Default is 10500.

DSS property name: Isc1, DSS property index: 12.

Isc3: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. 3-phase short circuit current, amps. Default is 10000.

DSS property name: Isc3, DSS property index: 11.

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 35.

Losses() altdss.types.ComplexArray#

For each element in the batch: total losses in the element, in VA (watts, vars).

Original COM help: https://opendss.epri.com/Losses1.html

MVASC1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

MVA Short Circuit, 1-phase fault. Default = 2100. The “single-phase impedance”, Zs, is determined by squaring the base kV and dividing by this value. Then Z0 is determined by Z0 = 3Zs - 2Z1. For 1-phase sources, Zs is used directly. Use X0R0 to define X/R ratio for 1-phase source.

DSS property name: MVASC1, DSS property index: 8.

MVASC3: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

MVA Short circuit, 3-phase fault. Default = 2000. Z1 is determined by squaring the base kv and dividing by this value. For single-phase source, this value is not used.

DSS property name: MVASC3, DSS property index: 7.

MaxCurrent(terminal: int) altdss.types.Float64Array#

Returns the maximum current (magnitude) at the specified terminal for each element in this batch. Use -1 as terminal to get the value across all terminals.

Model: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

{Thevenin* | Ideal} Specifies whether the Vsource is to be considered a Thevenin short circuit model or a quasi-ideal voltage source. If Thevenin, the Vsource uses the impedances defined for all calculations. If “Ideal”, the model uses a small impedance on the diagonal of the impedance matrix for the fundamental base frequency power flow only. Then switches to actual Thevenin model for other frequencies.

DSS property name: Model, DSS property index: 30.

Model_str: List[str]#

‘property(…)’

{Thevenin* | Ideal} Specifies whether the Vsource is to be considered a Thevenin short circuit model or a quasi-ideal voltage source. If Thevenin, the Vsource uses the impedances defined for all calculations. If “Ideal”, the model uses a small impedance on the diagonal of the impedance matrix for the fundamental base frequency power flow only. Then switches to actual Thevenin model for other frequencies.

DSS property name: Model, DSS property index: 30.

property Name: List[str]#
NumConductors() altdss.types.Int32Array#

Number of conductors per terminal for each element in the batch.

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() altdss.types.Int32Array#

Number of controllers connected to each device in the batch.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() altdss.types.Int32Array#

Number of Phases for each element in this batch.

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() altdss.types.Int32Array#

Number of terminals for each Circuit Element in the batch.

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() List[Union[altdss.DSSObj.DSSObj, None]]#

Returns (as a list of Python objects) the OCP device controlling each element.

OCPDeviceIndex() altdss.types.Int32Array#

For each element in the batch: index into each controller list of the OCP Device controlling each circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() List[dss.enums.OCPDevType]#

For each element in the batch: type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of phases. Defaults to 3.

DSS property name: Phases, DSS property index: 6.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal, of each element in the batch.

Original COM help: https://opendss.epri.com/Powers.html

R0: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. Zero-sequence resistance, ohms. Default is 1.9.

DSS property name: R0, DSS property index: 15.

R1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. Positive-sequence resistance, ohms. Default is 1.65.

DSS property name: R1, DSS property index: 13.

ScanType: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

{pos*| zero | none} Maintain specified sequence for harmonic solution. Default is positive sequence. Otherwise, angle between phases rotates with harmonic.

DSS property name: ScanType, DSS property index: 17.

ScanType_str: List[str]#

‘property(…)’

{pos*| zero | none} Maintain specified sequence for harmonic solution. Default is positive sequence. Otherwise, angle between phases rotates with harmonic.

DSS property name: ScanType, DSS property index: 17.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

Sequence: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

{pos*| neg | zero} Set the phase angles for the specified symmetrical component sequence for non-harmonic solution modes. Default is positive sequence.

DSS property name: Sequence, DSS property index: 18.

Sequence_str: List[str]#

‘property(…)’

{pos*| neg | zero} Set the phase angles for the specified symmetrical component sequence for non-harmonic solution modes. Default is positive sequence.

DSS property name: Sequence, DSS property index: 18.

Spectrum: List[altdss.Spectrum.Spectrum]#

‘property(…)’

Name of harmonic spectrum for this source. Default is “defaultvsource”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 32.

Spectrum_str: List[str]#

‘property(…)’

Name of harmonic spectrum for this source. Default is “defaultvsource”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 32.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at all terminals of the circuit elements in this batch.

The resulting array is equivalent to concatenating the TotalPowers for each element.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

X0: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. Zero-sequence reactance, ohms. Default is 5.7.

DSS property name: X0, DSS property index: 16.

X0R0: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Zero-sequence X/R ratio.Default = 3.

DSS property name: X0R0, DSS property index: 10.

X1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. Positive-sequence reactance, ohms. Default is 6.6.

DSS property name: X1, DSS property index: 14.

X1R1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Positive-sequence X/R ratio. Default = 4.

DSS property name: X1R1, DSS property index: 9.

Yearly: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for YEARLY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Yearly, DSS property index: 27.

Yearly_str: List[str]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for YEARLY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Yearly, DSS property index: 27.

Z2: List[complex]#

‘property(…)’

Negative-sequence equivalent source impedance, ohms, as a 2-element array representing a complex number. Example:

Z2=[1, 2] ! represents 1 + j2

Used to define the impedance matrix of the VSOURCE if Z1 is also specified.

Note: Z2 defaults to Z1 if it is not specifically defined. If Z2 is not equal to Z1, the impedance matrix is asymmetrical.

DSS property name: Z2, DSS property index: 22.

__call__()#
__contains__(name: str) bool#
__getitem__(name_or_idx)#
__init__(iobj)#
__iter__()#
__len__() int#
batch(**kwargs)#

Creates a new batch handler of (existing) objects

batch_new(names: Optional[List[AnyStr]] = None, *, df=None, count: Optional[int] = None, begin_edit: Optional[bool] = None, **kwargs: typing_extensions.Unpack[altdss.Vsource.VsourceBatchProperties]) altdss.Vsource.VsourceBatch#

Creates a new batch of Vsource objects

Either names, count or df is required.

Parameters:
  • begin_edit – The argument begin_edit indicates if the user want to leave the elements in the edit state, and requires a call to end_edit() or equivalent. The default begin_edit is set to None. With None, the behavior will be adjusted according the default of how the batch is created.

  • **kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

  • names – When using a list of names, each new object will match the names from this list. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • count – When using count, new objects will be created with based on a random prefix, with an increasing integer up to count. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • df – Currently EXPERIMENTAL AND LIMITED, tries to get the columns from a dataframe to populate the names and the DSS properties. begin_edit defaults to False.

Returns:

Returns the new batch of DSS objects, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Vsource.VsourceBatchProperties]) altdss.Vsource.VsourceBatch#

Edit this Vsource batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

find(name_or_idx: Union[AnyStr, int]) altdss.DSSObj.DSSObj#

Returns an object from the collection by name or index; the index must be zero-based.

new(name: AnyStr, *, begin_edit: Optional[bool] = None, activate=False, **kwargs: typing_extensions.Unpack[altdss.Vsource.VsourceProperties]) altdss.Vsource.Vsource#

Creates a new Vsource.

Parameters:
  • name – The object’s name is a required positional argument.

  • activate – Activation (setting activate to true) is useful for integration with the classic API, and some internal OpenDSS commands. If you interact with this object only via the Alt API, no need to activate it (due to performance costs).

  • begin_edit – This controls how the edit context is left after the object creation:

  • True: The object will be left in the edit state, requiring an end_edit call or equivalent.

  • False: No edit context is started.

  • None: If no properties are passed as keyword arguments, the object will be left in the edit state (assumes the user will fill the properties from Python attributes). Otherwise, the internal edit context will be finalized.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns the new DSS object, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

pu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit of the base voltage that the source is actually operating at. “pu=1.05”

DSS property name: pu, DSS property index: 3.

puZ0: List[complex]#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z0. See Z0 property. Per-unit zero-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ0, DSS property index: 24.

puZ1: List[complex]#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z1. See Z1 property. Per-unit positive-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ1, DSS property index: 23.

puZ2: List[complex]#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z2. See Z2 property. Per-unit negative-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ2, DSS property index: 25.

puZIdeal: List[complex]#

‘property(…)’

2-element array: e.g., [1 2]. The pu impedance to use for the quasi-ideal voltage source model. Should be a very small impedances. Default is [1e-6, 0.001]. Per-unit impedance on base of Vsource BasekV and BaseMVA. If too small, solution may not work. Be sure to check the voltage values and powers.

DSS property name: puZIdeal, DSS property index: 31.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#
class altdss.Vsource.Vsource(api_util, ptr)#

Bases: altdss.DSSObj.DSSObj, altdss.CircuitElement.CircuitElementMixin, altdss.PCElement.PCElementMixin

Angle: float#

‘property(…)’

Phase angle in degrees of first phase: e.g.,Angle=10.3

DSS property name: Angle, DSS property index: 4.

BaseFreq: float#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 33.

BaseMVA: float#

‘property(…)’

Default value is 100. Base used to convert values specified with puZ1, puZ0, and puZ2 properties to ohms on kV base specified by BasekV property.

DSS property name: BaseMVA, DSS property index: 26.

BasekV: float#

‘property(…)’

Base Source kV, usually phase-phase (L-L) unless you are making a positive-sequence model or 1-phase modelin which case, it will be phase-neutral (L-N) kV.

DSS property name: BasekV, DSS property index: 2.

Bus1: str#

‘property(…)’

Name of bus to which the main terminal (1) is connected. bus1=busname bus1=busname.1.2.3

The VSOURCE object is a two-terminal voltage source (thevenin equivalent). Bus2 defaults to Bus1 with all phases connected to ground (node 0) unless previously specified. This is a Yg connection. If you want something different, define the Bus2 property explicitly.

DSS property name: Bus1, DSS property index: 1.

Bus2: str#

‘property(…)’

Name of bus to which 2nd terminal is connected. bus2=busname bus2=busname.1.2.3

Default is Bus1.0.0.0 (grounded wye connection)

DSS property name: Bus2, DSS property index: 19.

Close(terminal: int, phase: int) None#

Close the specified terminal and phase, if non-zero, or all conductors at the terminal.

Original COM help: https://opendss.epri.com/Close1.html

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

Daily: altdss.LoadShape.LoadShape#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DAILY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Sets Yearly curve if it is not already defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Daily, DSS property index: 28.

Daily_str: str#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DAILY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Sets Yearly curve if it is not already defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Daily, DSS property index: 28.

DisplayName: str#

‘property(…)’

Display name of the object (not necessarily unique)

Original COM help: https://opendss.epri.com/DisplayName.html

Duty: altdss.LoadShape.LoadShape#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DUTYCYCLE-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Defaults to Daily load shape when Daily is defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Duty, DSS property index: 29.

Duty_str: str#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DUTYCYCLE-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Defaults to Daily load shape when Daily is defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Duty, DSS property index: 29.

Enabled: bool#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 34.

EnergyMeter() altdss.DSSObj.DSSObj#

Energy Meter this element is assigned to.

Requires an energy meter with an updated zone.

Original COM help: https://opendss.epri.com/EnergyMeter.html

EnergyMeterName() str#

Name of the Energy Meter this element is assigned to.

Requires an energy meter with an updated zone.

Original COM help: https://opendss.epri.com/EnergyMeter.html

Frequency: float#

‘property(…)’

Source frequency. Defaults to system default base frequency.

DSS property name: Frequency, DSS property index: 5.

FullName() str#
GUID() str#

Object’s GUID/UUID. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

GetVariableValue(varIdxName: Union[AnyStr, int]) float#
Handle() int#

Index of this element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() bool#

Returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() bool#

Returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() bool#

Returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() bool#

Returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

IsOpen(terminal: int, phase: int) bool#

Returns true if the specified terminal and phase are open.

If the phase parameter is zero, returns if any conductor at the terminal is open.

Isc1: float#

‘property(…)’

Alternate method of defining the source impedance. single-phase short circuit current, amps. Default is 10500.

DSS property name: Isc1, DSS property index: 12.

Isc3: float#

‘property(…)’

Alternate method of defining the source impedance. 3-phase short circuit current, amps. Default is 10000.

DSS property name: Isc3, DSS property index: 11.

Like(value: AnyStr)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 35.

Losses() complex#

Total (complex) losses in the element, in VA (watts, vars)

Original COM help: https://opendss.epri.com/Losses1.html

MVASC1: float#

‘property(…)’

MVA Short Circuit, 1-phase fault. Default = 2100. The “single-phase impedance”, Zs, is determined by squaring the base kV and dividing by this value. Then Z0 is determined by Z0 = 3Zs - 2Z1. For 1-phase sources, Zs is used directly. Use X0R0 to define X/R ratio for 1-phase source.

DSS property name: MVASC1, DSS property index: 8.

MVASC3: float#

‘property(…)’

MVA Short circuit, 3-phase fault. Default = 2000. Z1 is determined by squaring the base kv and dividing by this value. For single-phase source, this value is not used.

DSS property name: MVASC3, DSS property index: 7.

MaxCurrent(terminal: int) float#

Returns the maximum current (magnitude) at the specified terminal. Use -1 as terminal to get the value across all terminals.

Model: altdss.enums.VSourceModel#

‘property(…)’

{Thevenin* | Ideal} Specifies whether the Vsource is to be considered a Thevenin short circuit model or a quasi-ideal voltage source. If Thevenin, the Vsource uses the impedances defined for all calculations. If “Ideal”, the model uses a small impedance on the diagonal of the impedance matrix for the fundamental base frequency power flow only. Then switches to actual Thevenin model for other frequencies.

DSS property name: Model, DSS property index: 30.

Model_str: str#

‘property(…)’

{Thevenin* | Ideal} Specifies whether the Vsource is to be considered a Thevenin short circuit model or a quasi-ideal voltage source. If Thevenin, the Vsource uses the impedances defined for all calculations. If “Ideal”, the model uses a small impedance on the diagonal of the impedance matrix for the fundamental base frequency power flow only. Then switches to actual Thevenin model for other frequencies.

DSS property name: Model, DSS property index: 30.

property Name: str#
NodeOrder() altdss.types.Int32Array#

Array of integer containing the node numbers (representing phases, for example) for each conductor of each terminal.

Be sure to run a solution to initialize the values after the circuit is created or modified.

NodeRef() altdss.types.Int32Array#

Array of integers, a copy of the internal NodeRef of the CktElement.

Be sure to run a solution to initialize the values after the circuit is created or modified.

NumConductors() int#

Number of conductors per terminal

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() int#

Number of controllers connected to this device.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() int#

Number of phases

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() int#

Number of terminals in this circuit element

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() Union[altdss.DSSObj.DSSObj, None]#

Returns (as a Python object) the OCP device controlling this element, if any.

OCPDeviceIndex() int#

Index into controller list of OCP Device controlling this circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() dss.enums.OCPDevType#

Type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

Open(terminal: int, phase: int) None#

Open the specified terminal and phase, if non-zero, or all conductors at the terminal.

Original COM help: https://opendss.epri.com/Open1.html

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: int#

‘property(…)’

Number of phases. Defaults to 3.

DSS property name: Phases, DSS property index: 6.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal

Original COM help: https://opendss.epri.com/Powers.html

R0: float#

‘property(…)’

Alternate method of defining the source impedance. Zero-sequence resistance, ohms. Default is 1.9.

DSS property name: R0, DSS property index: 15.

R1: float#

‘property(…)’

Alternate method of defining the source impedance. Positive-sequence resistance, ohms. Default is 1.65.

DSS property name: R1, DSS property index: 13.

Residuals() altdss.types.Float64Array#

Residual currents for each terminal: (magnitude, angle in degrees)

Original COM help: https://opendss.epri.com/Residuals.html

ScanType: altdss.enums.ScanType#

‘property(…)’

{pos*| zero | none} Maintain specified sequence for harmonic solution. Default is positive sequence. Otherwise, angle between phases rotates with harmonic.

DSS property name: ScanType, DSS property index: 17.

ScanType_str: str#

‘property(…)’

{pos*| zero | none} Maintain specified sequence for harmonic solution. Default is positive sequence. Otherwise, angle between phases rotates with harmonic.

DSS property name: ScanType, DSS property index: 17.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

Sequence: altdss.enums.SequenceType#

‘property(…)’

{pos*| neg | zero} Set the phase angles for the specified symmetrical component sequence for non-harmonic solution modes. Default is positive sequence.

DSS property name: Sequence, DSS property index: 18.

Sequence_str: str#

‘property(…)’

{pos*| neg | zero} Set the phase angles for the specified symmetrical component sequence for non-harmonic solution modes. Default is positive sequence.

DSS property name: Sequence, DSS property index: 18.

SetVariableValue(varIdxName: Union[AnyStr, int], value: float)#
Spectrum: altdss.Spectrum.Spectrum#

‘property(…)’

Name of harmonic spectrum for this source. Default is “defaultvsource”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 32.

Spectrum_str: str#

‘property(…)’

Name of harmonic spectrum for this source. Default is “defaultvsource”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 32.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at ALL terminals of the active circuit element.

Original COM help: https://opendss.epri.com/TotalPowers.html

VariableNames() List[str]#
VariableValues() altdss.types.Float64Array#
VariablesDict() Dict[str, float]#
Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

X0: float#

‘property(…)’

Alternate method of defining the source impedance. Zero-sequence reactance, ohms. Default is 5.7.

DSS property name: X0, DSS property index: 16.

X0R0: float#

‘property(…)’

Zero-sequence X/R ratio.Default = 3.

DSS property name: X0R0, DSS property index: 10.

X1: float#

‘property(…)’

Alternate method of defining the source impedance. Positive-sequence reactance, ohms. Default is 6.6.

DSS property name: X1, DSS property index: 14.

X1R1: float#

‘property(…)’

Positive-sequence X/R ratio. Default = 4.

DSS property name: X1R1, DSS property index: 9.

YPrim() altdss.types.ComplexArray#

YPrim matrix, column order, complex numbers

Original COM help: https://opendss.epri.com/Yprim.html

Yearly: altdss.LoadShape.LoadShape#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for YEARLY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Yearly, DSS property index: 27.

Yearly_str: str#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for YEARLY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Yearly, DSS property index: 27.

Z2: complex#

‘property(…)’

Negative-sequence equivalent source impedance, ohms, as a 2-element array representing a complex number. Example:

Z2=[1, 2] ! represents 1 + j2

Used to define the impedance matrix of the VSOURCE if Z1 is also specified.

Note: Z2 defaults to Z1 if it is not specifically defined. If Z2 is not equal to Z1, the impedance matrix is asymmetrical.

DSS property name: Z2, DSS property index: 22.

__hash__()#

Return hash(self).

__init__(api_util, ptr)#
__ne__(other)#

Return self!=value.

__repr__()#

Return repr(self).

begin_edit() None#

Marks a DSS object for editing

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Vsource.VsourceProperties]) altdss.Vsource.Vsource#

Edit this Vsource.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS Edit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing state of a DSS object

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

pu: float#

‘property(…)’

Per unit of the base voltage that the source is actually operating at. “pu=1.05”

DSS property name: pu, DSS property index: 3.

puZ0: complex#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z0. See Z0 property. Per-unit zero-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ0, DSS property index: 24.

puZ1: complex#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z1. See Z1 property. Per-unit positive-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ1, DSS property index: 23.

puZ2: complex#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z2. See Z2 property. Per-unit negative-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ2, DSS property index: 25.

puZIdeal: complex#

‘property(…)’

2-element array: e.g., [1 2]. The pu impedance to use for the quasi-ideal voltage source model. Should be a very small impedances. Default is [1e-6, 0.001]. Per-unit impedance on base of Vsource BasekV and BaseMVA. If too small, solution may not work. Be sure to check the voltage values and powers.

DSS property name: puZIdeal, DSS property index: 31.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns an element’s data as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features.

By default (options = 0), only the properties explicitly set. The properties are returned in the order they are set in the input. As a reminder, OpenDSS is sensitive to the order of the properties.

The options bit-flags are available in the DSSJSONFlags enum. Values used by this function are:

  • Full: if set, all properties are returned, ordered by property index instead.

  • SkipRedundant: if used with Full, all properties except redundant and unused ones are returned.

  • EnumAsInt: enumerated properties are returned as integer values instead of strings.

  • FullNames: any element reference will use the full name ({class name}.{element name}) even if not required.

  • Pretty: more whitespace is used in the output for a “prettier” format.

  • SkipDSSClass: do not add the “DSSClass” property to the JSON objects.

NOT IMPLEMENTED YET:

  • State: include run-time state information

  • Debug: include debug information

Other bit-flags are reserved for future uses. Please use DSSJSONFlags enum to avoid potential conflicts.

(API Extension)

class altdss.Vsource.VsourceBatch(api_util, **kwargs)#

Bases: altdss.Batch.DSSBatch, altdss.CircuitElement.CircuitElementBatchMixin, altdss.PCElement.PCElementBatchMixin

Angle: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Phase angle in degrees of first phase: e.g.,Angle=10.3

DSS property name: Angle, DSS property index: 4.

BaseFreq: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 33.

BaseMVA: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default value is 100. Base used to convert values specified with puZ1, puZ0, and puZ2 properties to ohms on kV base specified by BasekV property.

DSS property name: BaseMVA, DSS property index: 26.

BasekV: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Source kV, usually phase-phase (L-L) unless you are making a positive-sequence model or 1-phase modelin which case, it will be phase-neutral (L-N) kV.

DSS property name: BasekV, DSS property index: 2.

Bus1: List[str]#

‘property(…)’

Name of bus to which the main terminal (1) is connected. bus1=busname bus1=busname.1.2.3

The VSOURCE object is a two-terminal voltage source (thevenin equivalent). Bus2 defaults to Bus1 with all phases connected to ground (node 0) unless previously specified. This is a Yg connection. If you want something different, define the Bus2 property explicitly.

DSS property name: Bus1, DSS property index: 1.

Bus2: List[str]#

‘property(…)’

Name of bus to which 2nd terminal is connected. bus2=busname bus2=busname.1.2.3

Default is Bus1.0.0.0 (grounded wye connection)

DSS property name: Bus2, DSS property index: 19.

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

CurrentsMagAng() altdss.types.Float64Array#

Currents in magnitude, angle (degrees) format as a array of doubles.

Original COM help: https://opendss.epri.com/CurrentsMagAng.html

Daily: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DAILY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Sets Yearly curve if it is not already defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Daily, DSS property index: 28.

Daily_str: List[str]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DAILY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Sets Yearly curve if it is not already defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Daily, DSS property index: 28.

Duty: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DUTYCYCLE-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Defaults to Daily load shape when Daily is defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Duty, DSS property index: 29.

Duty_str: List[str]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for DUTYCYCLE-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Defaults to Daily load shape when Daily is defined. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Duty, DSS property index: 29.

Enabled: List[bool]#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 34.

EnergyMeter() List[altdss.DSSObj.DSSObj]#
EnergyMeterName() List[str]#
Frequency: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Source frequency. Defaults to system default base frequency.

DSS property name: Frequency, DSS property index: 5.

FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

GUID() List[str]#

GUID/UUID for each object. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

Handle() altdss.types.Int32Array#

Index of each element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() altdss.types.BoolArray#

For each element in the batch: returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() altdss.types.BoolArray#

For each element in the batch: returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

Isc1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. single-phase short circuit current, amps. Default is 10500.

DSS property name: Isc1, DSS property index: 12.

Isc3: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. 3-phase short circuit current, amps. Default is 10000.

DSS property name: Isc3, DSS property index: 11.

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 35.

Losses() altdss.types.ComplexArray#

For each element in the batch: total losses in the element, in VA (watts, vars).

Original COM help: https://opendss.epri.com/Losses1.html

MVASC1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

MVA Short Circuit, 1-phase fault. Default = 2100. The “single-phase impedance”, Zs, is determined by squaring the base kV and dividing by this value. Then Z0 is determined by Z0 = 3Zs - 2Z1. For 1-phase sources, Zs is used directly. Use X0R0 to define X/R ratio for 1-phase source.

DSS property name: MVASC1, DSS property index: 8.

MVASC3: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

MVA Short circuit, 3-phase fault. Default = 2000. Z1 is determined by squaring the base kv and dividing by this value. For single-phase source, this value is not used.

DSS property name: MVASC3, DSS property index: 7.

MaxCurrent(terminal: int) altdss.types.Float64Array#

Returns the maximum current (magnitude) at the specified terminal for each element in this batch. Use -1 as terminal to get the value across all terminals.

Model: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

{Thevenin* | Ideal} Specifies whether the Vsource is to be considered a Thevenin short circuit model or a quasi-ideal voltage source. If Thevenin, the Vsource uses the impedances defined for all calculations. If “Ideal”, the model uses a small impedance on the diagonal of the impedance matrix for the fundamental base frequency power flow only. Then switches to actual Thevenin model for other frequencies.

DSS property name: Model, DSS property index: 30.

Model_str: List[str]#

‘property(…)’

{Thevenin* | Ideal} Specifies whether the Vsource is to be considered a Thevenin short circuit model or a quasi-ideal voltage source. If Thevenin, the Vsource uses the impedances defined for all calculations. If “Ideal”, the model uses a small impedance on the diagonal of the impedance matrix for the fundamental base frequency power flow only. Then switches to actual Thevenin model for other frequencies.

DSS property name: Model, DSS property index: 30.

property Name: List[str]#
NumConductors() altdss.types.Int32Array#

Number of conductors per terminal for each element in the batch.

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() altdss.types.Int32Array#

Number of controllers connected to each device in the batch.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() altdss.types.Int32Array#

Number of Phases for each element in this batch.

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() altdss.types.Int32Array#

Number of terminals for each Circuit Element in the batch.

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() List[Union[altdss.DSSObj.DSSObj, None]]#

Returns (as a list of Python objects) the OCP device controlling each element.

OCPDeviceIndex() altdss.types.Int32Array#

For each element in the batch: index into each controller list of the OCP Device controlling each circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() List[dss.enums.OCPDevType]#

For each element in the batch: type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of phases. Defaults to 3.

DSS property name: Phases, DSS property index: 6.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal, of each element in the batch.

Original COM help: https://opendss.epri.com/Powers.html

R0: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. Zero-sequence resistance, ohms. Default is 1.9.

DSS property name: R0, DSS property index: 15.

R1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. Positive-sequence resistance, ohms. Default is 1.65.

DSS property name: R1, DSS property index: 13.

ScanType: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

{pos*| zero | none} Maintain specified sequence for harmonic solution. Default is positive sequence. Otherwise, angle between phases rotates with harmonic.

DSS property name: ScanType, DSS property index: 17.

ScanType_str: List[str]#

‘property(…)’

{pos*| zero | none} Maintain specified sequence for harmonic solution. Default is positive sequence. Otherwise, angle between phases rotates with harmonic.

DSS property name: ScanType, DSS property index: 17.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

Sequence: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

{pos*| neg | zero} Set the phase angles for the specified symmetrical component sequence for non-harmonic solution modes. Default is positive sequence.

DSS property name: Sequence, DSS property index: 18.

Sequence_str: List[str]#

‘property(…)’

{pos*| neg | zero} Set the phase angles for the specified symmetrical component sequence for non-harmonic solution modes. Default is positive sequence.

DSS property name: Sequence, DSS property index: 18.

Spectrum: List[altdss.Spectrum.Spectrum]#

‘property(…)’

Name of harmonic spectrum for this source. Default is “defaultvsource”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 32.

Spectrum_str: List[str]#

‘property(…)’

Name of harmonic spectrum for this source. Default is “defaultvsource”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 32.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at all terminals of the circuit elements in this batch.

The resulting array is equivalent to concatenating the TotalPowers for each element.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

X0: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. Zero-sequence reactance, ohms. Default is 5.7.

DSS property name: X0, DSS property index: 16.

X0R0: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Zero-sequence X/R ratio.Default = 3.

DSS property name: X0R0, DSS property index: 10.

X1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Alternate method of defining the source impedance. Positive-sequence reactance, ohms. Default is 6.6.

DSS property name: X1, DSS property index: 14.

X1R1: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Positive-sequence X/R ratio. Default = 4.

DSS property name: X1R1, DSS property index: 9.

Yearly: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for YEARLY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Yearly, DSS property index: 27.

Yearly_str: List[str]#

‘property(…)’

LOADSHAPE object to use for the per-unit voltage for YEARLY-mode simulations. Set the Mult property of the LOADSHAPE to the pu curve. Qmult is not used. If UseActual=Yes then the Mult curve should be actual L-N kV.

Must be previously defined as a LOADSHAPE object.

Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set to NONE to reset to no loadshape for Yearly mode. The default is no variation.

DSS property name: Yearly, DSS property index: 27.

Z2: List[complex]#

‘property(…)’

Negative-sequence equivalent source impedance, ohms, as a 2-element array representing a complex number. Example:

Z2=[1, 2] ! represents 1 + j2

Used to define the impedance matrix of the VSOURCE if Z1 is also specified.

Note: Z2 defaults to Z1 if it is not specifically defined. If Z2 is not equal to Z1, the impedance matrix is asymmetrical.

DSS property name: Z2, DSS property index: 22.

__call__()#
__getitem__(idx0) altdss.DSSObj.DSSObj#

Get element at 0-based index of the batch pointer array

__init__(api_util, **kwargs)#
__iter__()#
__len__() int#
batch(**kwargs) altdss.Batch.DSSBatch#

Filter a batch using integer or float DSS properties, returning a new batch.

For integers, provide a single value to match.

For floats, provide a range as a 2-valued tuple/list (min value, max value), or an exact value to value (not recommended).

Multiple properties can be listed to allow filtering various conditions.

Example for loads:

    # Create an initial batch using a regular expression
    abc_loads = altdss.Load.batch(re=r'^abc.*$') # a batch of all loads with names starting with "abc"
    abc_loads_filtered = abc_loads.batch(Class=1, Phases=1, kV=(0.1, 1.0))

    # Create an initial batch, already filtered
    abc_loads_filtered = altdss.Load.batch(re=r'^abc.*$', Class=1, Phases=1, kV=(0.1, 1.0))
begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Vsource.VsourceBatchProperties]) altdss.Vsource.VsourceBatch#

Edit this Vsource batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

pu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit of the base voltage that the source is actually operating at. “pu=1.05”

DSS property name: pu, DSS property index: 3.

puZ0: List[complex]#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z0. See Z0 property. Per-unit zero-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ0, DSS property index: 24.

puZ1: List[complex]#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z1. See Z1 property. Per-unit positive-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ1, DSS property index: 23.

puZ2: List[complex]#

‘property(…)’

2-element array: e.g., [1 2]. An alternate way to specify Z2. See Z2 property. Per-unit negative-sequence impedance on base of Vsource BasekV and BaseMVA.

DSS property name: puZ2, DSS property index: 25.

puZIdeal: List[complex]#

‘property(…)’

2-element array: e.g., [1 2]. The pu impedance to use for the quasi-ideal voltage source model. Should be a very small impedances. Default is [1e-6, 0.001]. Per-unit impedance on base of Vsource BasekV and BaseMVA. If too small, solution may not work. Be sure to check the voltage values and powers.

DSS property name: puZIdeal, DSS property index: 31.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#
class altdss.Vsource.VsourceBatchProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

Angle: Union[float, altdss.types.Float64Array]#

None

BaseFreq: Union[float, altdss.types.Float64Array]#

None

BaseMVA: Union[float, altdss.types.Float64Array]#

None

BasekV: Union[float, altdss.types.Float64Array]#

None

Bus1: Union[AnyStr, List[AnyStr]]#

None

Bus2: Union[AnyStr, List[AnyStr]]#

None

Daily: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

Duty: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

Enabled: bool#

None

Frequency: Union[float, altdss.types.Float64Array]#

None

Isc1: Union[float, altdss.types.Float64Array]#

None

Isc3: Union[float, altdss.types.Float64Array]#

None

Like: AnyStr#

None

MVASC1: Union[float, altdss.types.Float64Array]#

None

MVASC3: Union[float, altdss.types.Float64Array]#

None

Model: Union[AnyStr, int, altdss.enums.VSourceModel, List[AnyStr], List[int], List[altdss.enums.VSourceModel], altdss.types.Int32Array]#

None

Phases: Union[int, altdss.types.Int32Array]#

None

R0: Union[float, altdss.types.Float64Array]#

None

R1: Union[float, altdss.types.Float64Array]#

None

ScanType: Union[AnyStr, int, altdss.enums.ScanType, List[AnyStr], List[int], List[altdss.enums.ScanType], altdss.types.Int32Array]#

None

Sequence: Union[AnyStr, int, altdss.enums.SequenceType, List[AnyStr], List[int], List[altdss.enums.SequenceType], altdss.types.Int32Array]#

None

Spectrum: Union[AnyStr, altdss.Spectrum.Spectrum, List[AnyStr], List[altdss.Spectrum.Spectrum]]#

None

X0: Union[float, altdss.types.Float64Array]#

None

X0R0: Union[float, altdss.types.Float64Array]#

None

X1: Union[float, altdss.types.Float64Array]#

None

X1R1: Union[float, altdss.types.Float64Array]#

None

Yearly: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

Z2: Union[complex, List[complex]]#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

keys()#

D.keys() -> a set-like object providing a view on D’s keys

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

pu: Union[float, altdss.types.Float64Array]#

None

puZ0: Union[complex, List[complex]]#

None

puZ1: Union[complex, List[complex]]#

None

puZ2: Union[complex, List[complex]]#

None

puZIdeal: Union[complex, List[complex]]#

None

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values

class altdss.Vsource.VsourceProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

Angle: float#

None

BaseFreq: float#

None

BaseMVA: float#

None

BasekV: float#

None

Bus1: AnyStr#

None

Bus2: AnyStr#

None

Daily: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

Duty: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

Enabled: bool#

None

Frequency: float#

None

Isc1: float#

None

Isc3: float#

None

Like: AnyStr#

None

MVASC1: float#

None

MVASC3: float#

None

Model: Union[AnyStr, int, altdss.enums.VSourceModel]#

None

Phases: int#

None

R0: float#

None

R1: float#

None

ScanType: Union[AnyStr, int, altdss.enums.ScanType]#

None

Sequence: Union[AnyStr, int, altdss.enums.SequenceType]#

None

Spectrum: Union[AnyStr, altdss.Spectrum.Spectrum]#

None

X0: float#

None

X0R0: float#

None

X1: float#

None

X1R1: float#

None

Yearly: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

Z2: complex#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

keys()#

D.keys() -> a set-like object providing a view on D’s keys

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

pu: float#

None

puZ0: complex#

None

puZ1: complex#

None

puZ2: complex#

None

puZIdeal: complex#

None

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values