altdss.ExpControl

Contents

altdss.ExpControl#

Module Contents#

Classes#

ExpControl

ExpControlBatch

ExpControlBatchProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

ExpControlProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

IExpControl

API#

class altdss.ExpControl.ExpControl(api_util, ptr)#

Bases: altdss.DSSObj.DSSObj, altdss.CircuitElement.CircuitElementMixin

BaseFreq: float#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 15.

Close(terminal: int, phase: int) None#

Close the specified terminal and phase, if non-zero, or all conductors at the terminal.

Original COM help: https://opendss.epri.com/Close1.html

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

DERList: List[str]#

‘property(…)’

Alternative to PVSystemList for CIM export and import.

However, storage is not actually implemented yet. Use fully qualified PVSystem names.

DSS property name: DERList, DSS property index: 14.

DeltaQ_Factor: float#

‘property(…)’

Convergence parameter; Defaults to 0.7.

Sets the maximum change (in per unit) from the prior var output level to the desired var output level during each control iteration. If numerical instability is noticed in solutions such as var sign changing from one control iteration to the next and voltages oscillating between two values with some separation, this is an indication of numerical instability (use the EventLog to diagnose). If the maximum control iterations are exceeded, and no numerical instability is seen in the EventLog of via monitors, then try increasing the value of this parameter to reduce the number of control iterations needed to achieve the control criteria, and move to the power flow solution.

DSS property name: DeltaQ_Factor, DSS property index: 11.

DisplayName: str#

‘property(…)’

Display name of the object (not necessarily unique)

Original COM help: https://opendss.epri.com/DisplayName.html

Enabled: bool#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 16.

EventLog: bool#

‘property(…)’

{Yes/True* | No/False} Default is No for ExpControl. Log control actions to Eventlog.

DSS property name: EventLog, DSS property index: 10.

FullName() str#
GUID() str#

Object’s GUID/UUID. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

Handle() int#

Index of this element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() bool#

Returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() bool#

Returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() bool#

Returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() bool#

Returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

IsOpen(terminal: int, phase: int) bool#

Returns true if the specified terminal and phase are open.

If the phase parameter is zero, returns if any conductor at the terminal is open.

Like(value: AnyStr)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 17.

Losses() complex#

Total (complex) losses in the element, in VA (watts, vars)

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) float#

Returns the maximum current (magnitude) at the specified terminal. Use -1 as terminal to get the value across all terminals.

property Name: str#
NodeOrder() altdss.types.Int32Array#

Array of integer containing the node numbers (representing phases, for example) for each conductor of each terminal.

Be sure to run a solution to initialize the values after the circuit is created or modified.

NodeRef() altdss.types.Int32Array#

Array of integers, a copy of the internal NodeRef of the CktElement.

Be sure to run a solution to initialize the values after the circuit is created or modified.

NumConductors() int#

Number of conductors per terminal

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() int#

Number of controllers connected to this device.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() int#

Number of phases

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() int#

Number of terminals in this circuit element

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() Union[altdss.DSSObj.DSSObj, None]#

Returns (as a Python object) the OCP device controlling this element, if any.

OCPDeviceIndex() int#

Index into controller list of OCP Device controlling this circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() dss.enums.OCPDevType#

Type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

Open(terminal: int, phase: int) None#

Open the specified terminal and phase, if non-zero, or all conductors at the terminal.

Original COM help: https://opendss.epri.com/Open1.html

PVSystemList: List[str]#

‘property(…)’

Array list of PVSystems to be controlled.

If not specified, all PVSystems in the circuit are assumed to be controlled by this ExpControl.

DSS property name: PVSystemList, DSS property index: 1.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal

Original COM help: https://opendss.epri.com/Powers.html

PreferQ: bool#

‘property(…)’

{Yes/True* | No/False} Default is No for ExpControl.

Curtails real power output as needed to meet the reactive power requirement. IEEE1547-2018 requires Yes, but the default is No for backward compatibility of OpenDSS models.

DSS property name: PreferQ, DSS property index: 12.

QBias: float#

‘property(…)’

Equilibrium per-unit reactive power when V=Vreg; defaults to 0.

Enter > 0 for lagging (capacitive) bias, < 0 for leading (inductive) bias.

DSS property name: QBias, DSS property index: 5.

QMaxLag: float#

‘property(…)’

Limit on lagging (capacitive) reactive power injection, in per-unit of base kva; defaults to 0.44.

For Category A inverters per P1547/D7, set this value to 0.25.Regardless of QmaxLag, the reactive power injection is still limited by dynamic headroom when actual real power output exceeds 0%

DSS property name: QMaxLag, DSS property index: 9.

QMaxLead: float#

‘property(…)’

Limit on leading (inductive) reactive power injection, in per-unit of base kva; defaults to 0.44.For Category A inverters per P1547/D7, set this value to 0.25.

Regardless of QmaxLead, the reactive power injection is still limited by dynamic headroom when actual real power output exceeds 0%

DSS property name: QMaxLead, DSS property index: 8.

Residuals() altdss.types.Float64Array#

Residual currents for each terminal: (magnitude, angle in degrees)

Original COM help: https://opendss.epri.com/Residuals.html

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

Slope: float#

‘property(…)’

Per-unit reactive power injection / per-unit voltage deviation from Vreg; defaults to 50.

Unlike InvControl, base reactive power is constant at the inverter kva rating.

DSS property name: Slope, DSS property index: 3.

TResponse: float#

‘property(…)’

Open-loop response time for changes in Q.

The value of Q reaches 90% of the target change within Tresponse, which corresponds to a low-pass filter having tau = Tresponse / 2.3026. The behavior is similar to LPFTAU in InvControl, but here the response time is input instead of the time constant. IEEE1547-2018 default is 10s for Category A and 5s for Category B, adjustable from 1s to 90s for both categories. However, the default is 0 for backward compatibility of OpenDSS models.

DSS property name: TResponse, DSS property index: 13.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at ALL terminals of the active circuit element.

Original COM help: https://opendss.epri.com/TotalPowers.html

VReg: float#

‘property(…)’

Per-unit voltage at which reactive power is zero; defaults to 1.0.

This may dynamically self-adjust when VregTau > 0, limited by VregMin and VregMax.If input as 0, Vreg will be initialized from a snapshot solution with no inverter Q.The equilibrium point of reactive power is also affected by Qbias

DSS property name: VReg, DSS property index: 2.

VRegMax: float#

‘property(…)’

Upper limit on adaptive Vreg; defaults to 1.05 per-unit

DSS property name: VRegMax, DSS property index: 7.

VRegMin: float#

‘property(…)’

Lower limit on adaptive Vreg; defaults to 0.95 per-unit

DSS property name: VRegMin, DSS property index: 6.

VRegTau: float#

‘property(…)’

Time constant for adaptive Vreg. Defaults to 1200 seconds.

When the control injects or absorbs reactive power due to a voltage deviation from the Q=0 crossing of the volt-var curve, the Q=0 crossing will move toward the actual terminal voltage with this time constant. Over time, the effect is to gradually bring inverter reactive power to zero as the grid voltage changes due to non-solar effects. If zero, then Vreg stays fixed. IEEE1547-2018 requires adjustability from 300s to 5000s

DSS property name: VRegTau, DSS property index: 4.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

YPrim() altdss.types.ComplexArray#

YPrim matrix, column order, complex numbers

Original COM help: https://opendss.epri.com/Yprim.html

__hash__()#

Return hash(self).

__init__(api_util, ptr)#
__ne__(other)#

Return self!=value.

__repr__()#

Return repr(self).

begin_edit() None#

Marks a DSS object for editing

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.ExpControl.ExpControlProperties]) altdss.ExpControl.ExpControl#

Edit this ExpControl.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS Edit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing state of a DSS object

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns an element’s data as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features.

By default (options = 0), only the properties explicitly set. The properties are returned in the order they are set in the input. As a reminder, OpenDSS is sensitive to the order of the properties.

The options bit-flags are available in the DSSJSONFlags enum. Values used by this function are:

  • Full: if set, all properties are returned, ordered by property index instead.

  • SkipRedundant: if used with Full, all properties except redundant and unused ones are returned.

  • EnumAsInt: enumerated properties are returned as integer values instead of strings.

  • FullNames: any element reference will use the full name ({class name}.{element name}) even if not required.

  • Pretty: more whitespace is used in the output for a “prettier” format.

  • SkipDSSClass: do not add the “DSSClass” property to the JSON objects.

NOT IMPLEMENTED YET:

  • State: include run-time state information

  • Debug: include debug information

Other bit-flags are reserved for future uses. Please use DSSJSONFlags enum to avoid potential conflicts.

(API Extension)

class altdss.ExpControl.ExpControlBatch(api_util, **kwargs)#

Bases: altdss.Batch.DSSBatch, altdss.CircuitElement.CircuitElementBatchMixin

BaseFreq: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 15.

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

CurrentsMagAng() altdss.types.Float64Array#

Currents in magnitude, angle (degrees) format as a array of doubles.

Original COM help: https://opendss.epri.com/CurrentsMagAng.html

DERList: List[List[str]]#

‘property(…)’

Alternative to PVSystemList for CIM export and import.

However, storage is not actually implemented yet. Use fully qualified PVSystem names.

DSS property name: DERList, DSS property index: 14.

DeltaQ_Factor: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Convergence parameter; Defaults to 0.7.

Sets the maximum change (in per unit) from the prior var output level to the desired var output level during each control iteration. If numerical instability is noticed in solutions such as var sign changing from one control iteration to the next and voltages oscillating between two values with some separation, this is an indication of numerical instability (use the EventLog to diagnose). If the maximum control iterations are exceeded, and no numerical instability is seen in the EventLog of via monitors, then try increasing the value of this parameter to reduce the number of control iterations needed to achieve the control criteria, and move to the power flow solution.

DSS property name: DeltaQ_Factor, DSS property index: 11.

Enabled: List[bool]#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 16.

EventLog: List[bool]#

‘property(…)’

{Yes/True* | No/False} Default is No for ExpControl. Log control actions to Eventlog.

DSS property name: EventLog, DSS property index: 10.

FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

GUID() List[str]#

GUID/UUID for each object. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

Handle() altdss.types.Int32Array#

Index of each element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() altdss.types.BoolArray#

For each element in the batch: returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() altdss.types.BoolArray#

For each element in the batch: returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 17.

Losses() altdss.types.ComplexArray#

For each element in the batch: total losses in the element, in VA (watts, vars).

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) altdss.types.Float64Array#

Returns the maximum current (magnitude) at the specified terminal for each element in this batch. Use -1 as terminal to get the value across all terminals.

property Name: List[str]#
NumConductors() altdss.types.Int32Array#

Number of conductors per terminal for each element in the batch.

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() altdss.types.Int32Array#

Number of controllers connected to each device in the batch.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() altdss.types.Int32Array#

Number of Phases for each element in this batch.

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() altdss.types.Int32Array#

Number of terminals for each Circuit Element in the batch.

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() List[Union[altdss.DSSObj.DSSObj, None]]#

Returns (as a list of Python objects) the OCP device controlling each element.

OCPDeviceIndex() altdss.types.Int32Array#

For each element in the batch: index into each controller list of the OCP Device controlling each circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() List[dss.enums.OCPDevType]#

For each element in the batch: type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

PVSystemList: List[List[str]]#

‘property(…)’

Array list of PVSystems to be controlled.

If not specified, all PVSystems in the circuit are assumed to be controlled by this ExpControl.

DSS property name: PVSystemList, DSS property index: 1.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal, of each element in the batch.

Original COM help: https://opendss.epri.com/Powers.html

PreferQ: List[bool]#

‘property(…)’

{Yes/True* | No/False} Default is No for ExpControl.

Curtails real power output as needed to meet the reactive power requirement. IEEE1547-2018 requires Yes, but the default is No for backward compatibility of OpenDSS models.

DSS property name: PreferQ, DSS property index: 12.

QBias: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Equilibrium per-unit reactive power when V=Vreg; defaults to 0.

Enter > 0 for lagging (capacitive) bias, < 0 for leading (inductive) bias.

DSS property name: QBias, DSS property index: 5.

QMaxLag: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Limit on lagging (capacitive) reactive power injection, in per-unit of base kva; defaults to 0.44.

For Category A inverters per P1547/D7, set this value to 0.25.Regardless of QmaxLag, the reactive power injection is still limited by dynamic headroom when actual real power output exceeds 0%

DSS property name: QMaxLag, DSS property index: 9.

QMaxLead: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Limit on leading (inductive) reactive power injection, in per-unit of base kva; defaults to 0.44.For Category A inverters per P1547/D7, set this value to 0.25.

Regardless of QmaxLead, the reactive power injection is still limited by dynamic headroom when actual real power output exceeds 0%

DSS property name: QMaxLead, DSS property index: 8.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

Slope: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per-unit reactive power injection / per-unit voltage deviation from Vreg; defaults to 50.

Unlike InvControl, base reactive power is constant at the inverter kva rating.

DSS property name: Slope, DSS property index: 3.

TResponse: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Open-loop response time for changes in Q.

The value of Q reaches 90% of the target change within Tresponse, which corresponds to a low-pass filter having tau = Tresponse / 2.3026. The behavior is similar to LPFTAU in InvControl, but here the response time is input instead of the time constant. IEEE1547-2018 default is 10s for Category A and 5s for Category B, adjustable from 1s to 90s for both categories. However, the default is 0 for backward compatibility of OpenDSS models.

DSS property name: TResponse, DSS property index: 13.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at all terminals of the circuit elements in this batch.

The resulting array is equivalent to concatenating the TotalPowers for each element.

VReg: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per-unit voltage at which reactive power is zero; defaults to 1.0.

This may dynamically self-adjust when VregTau > 0, limited by VregMin and VregMax.If input as 0, Vreg will be initialized from a snapshot solution with no inverter Q.The equilibrium point of reactive power is also affected by Qbias

DSS property name: VReg, DSS property index: 2.

VRegMax: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Upper limit on adaptive Vreg; defaults to 1.05 per-unit

DSS property name: VRegMax, DSS property index: 7.

VRegMin: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Lower limit on adaptive Vreg; defaults to 0.95 per-unit

DSS property name: VRegMin, DSS property index: 6.

VRegTau: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Time constant for adaptive Vreg. Defaults to 1200 seconds.

When the control injects or absorbs reactive power due to a voltage deviation from the Q=0 crossing of the volt-var curve, the Q=0 crossing will move toward the actual terminal voltage with this time constant. Over time, the effect is to gradually bring inverter reactive power to zero as the grid voltage changes due to non-solar effects. If zero, then Vreg stays fixed. IEEE1547-2018 requires adjustability from 300s to 5000s

DSS property name: VRegTau, DSS property index: 4.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

__call__()#
__getitem__(idx0) altdss.DSSObj.DSSObj#

Get element at 0-based index of the batch pointer array

__init__(api_util, **kwargs)#
__iter__()#
__len__() int#
batch(**kwargs) altdss.Batch.DSSBatch#

Filter a batch using integer or float DSS properties, returning a new batch.

For integers, provide a single value to match.

For floats, provide a range as a 2-valued tuple/list (min value, max value), or an exact value to value (not recommended).

Multiple properties can be listed to allow filtering various conditions.

Example for loads:

    # Create an initial batch using a regular expression
    abc_loads = altdss.Load.batch(re=r'^abc.*$') # a batch of all loads with names starting with "abc"
    abc_loads_filtered = abc_loads.batch(Class=1, Phases=1, kV=(0.1, 1.0))

    # Create an initial batch, already filtered
    abc_loads_filtered = altdss.Load.batch(re=r'^abc.*$', Class=1, Phases=1, kV=(0.1, 1.0))
begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.ExpControl.ExpControlBatchProperties]) altdss.ExpControl.ExpControlBatch#

Edit this ExpControl batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#
class altdss.ExpControl.ExpControlBatchProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

BaseFreq: Union[float, altdss.types.Float64Array]#

None

DERList: List[AnyStr]#

None

DeltaQ_Factor: Union[float, altdss.types.Float64Array]#

None

Enabled: bool#

None

EventLog: bool#

None

Like: AnyStr#

None

PVSystemList: List[AnyStr]#

None

PreferQ: bool#

None

QBias: Union[float, altdss.types.Float64Array]#

None

QMaxLag: Union[float, altdss.types.Float64Array]#

None

QMaxLead: Union[float, altdss.types.Float64Array]#

None

Slope: Union[float, altdss.types.Float64Array]#

None

TResponse: Union[float, altdss.types.Float64Array]#

None

VReg: Union[float, altdss.types.Float64Array]#

None

VRegMax: Union[float, altdss.types.Float64Array]#

None

VRegMin: Union[float, altdss.types.Float64Array]#

None

VRegTau: Union[float, altdss.types.Float64Array]#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

keys()#

D.keys() -> a set-like object providing a view on D’s keys

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values

class altdss.ExpControl.ExpControlProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

BaseFreq: float#

None

DERList: List[AnyStr]#

None

DeltaQ_Factor: float#

None

Enabled: bool#

None

EventLog: bool#

None

Like: AnyStr#

None

PVSystemList: List[AnyStr]#

None

PreferQ: bool#

None

QBias: float#

None

QMaxLag: float#

None

QMaxLead: float#

None

Slope: float#

None

TResponse: float#

None

VReg: float#

None

VRegMax: float#

None

VRegMin: float#

None

VRegTau: float#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

keys()#

D.keys() -> a set-like object providing a view on D’s keys

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values

class altdss.ExpControl.IExpControl(iobj)#

Bases: altdss.DSSObj.IDSSObj, altdss.ExpControl.ExpControlBatch

BaseFreq: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 15.

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

CurrentsMagAng() altdss.types.Float64Array#

Currents in magnitude, angle (degrees) format as a array of doubles.

Original COM help: https://opendss.epri.com/CurrentsMagAng.html

DERList: List[List[str]]#

‘property(…)’

Alternative to PVSystemList for CIM export and import.

However, storage is not actually implemented yet. Use fully qualified PVSystem names.

DSS property name: DERList, DSS property index: 14.

DeltaQ_Factor: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Convergence parameter; Defaults to 0.7.

Sets the maximum change (in per unit) from the prior var output level to the desired var output level during each control iteration. If numerical instability is noticed in solutions such as var sign changing from one control iteration to the next and voltages oscillating between two values with some separation, this is an indication of numerical instability (use the EventLog to diagnose). If the maximum control iterations are exceeded, and no numerical instability is seen in the EventLog of via monitors, then try increasing the value of this parameter to reduce the number of control iterations needed to achieve the control criteria, and move to the power flow solution.

DSS property name: DeltaQ_Factor, DSS property index: 11.

Enabled: List[bool]#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 16.

EventLog: List[bool]#

‘property(…)’

{Yes/True* | No/False} Default is No for ExpControl. Log control actions to Eventlog.

DSS property name: EventLog, DSS property index: 10.

FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

GUID() List[str]#

GUID/UUID for each object. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

Handle() altdss.types.Int32Array#

Index of each element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() altdss.types.BoolArray#

For each element in the batch: returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() altdss.types.BoolArray#

For each element in the batch: returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 17.

Losses() altdss.types.ComplexArray#

For each element in the batch: total losses in the element, in VA (watts, vars).

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) altdss.types.Float64Array#

Returns the maximum current (magnitude) at the specified terminal for each element in this batch. Use -1 as terminal to get the value across all terminals.

property Name: List[str]#
NumConductors() altdss.types.Int32Array#

Number of conductors per terminal for each element in the batch.

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() altdss.types.Int32Array#

Number of controllers connected to each device in the batch.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() altdss.types.Int32Array#

Number of Phases for each element in this batch.

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() altdss.types.Int32Array#

Number of terminals for each Circuit Element in the batch.

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() List[Union[altdss.DSSObj.DSSObj, None]]#

Returns (as a list of Python objects) the OCP device controlling each element.

OCPDeviceIndex() altdss.types.Int32Array#

For each element in the batch: index into each controller list of the OCP Device controlling each circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() List[dss.enums.OCPDevType]#

For each element in the batch: type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

PVSystemList: List[List[str]]#

‘property(…)’

Array list of PVSystems to be controlled.

If not specified, all PVSystems in the circuit are assumed to be controlled by this ExpControl.

DSS property name: PVSystemList, DSS property index: 1.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal, of each element in the batch.

Original COM help: https://opendss.epri.com/Powers.html

PreferQ: List[bool]#

‘property(…)’

{Yes/True* | No/False} Default is No for ExpControl.

Curtails real power output as needed to meet the reactive power requirement. IEEE1547-2018 requires Yes, but the default is No for backward compatibility of OpenDSS models.

DSS property name: PreferQ, DSS property index: 12.

QBias: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Equilibrium per-unit reactive power when V=Vreg; defaults to 0.

Enter > 0 for lagging (capacitive) bias, < 0 for leading (inductive) bias.

DSS property name: QBias, DSS property index: 5.

QMaxLag: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Limit on lagging (capacitive) reactive power injection, in per-unit of base kva; defaults to 0.44.

For Category A inverters per P1547/D7, set this value to 0.25.Regardless of QmaxLag, the reactive power injection is still limited by dynamic headroom when actual real power output exceeds 0%

DSS property name: QMaxLag, DSS property index: 9.

QMaxLead: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Limit on leading (inductive) reactive power injection, in per-unit of base kva; defaults to 0.44.For Category A inverters per P1547/D7, set this value to 0.25.

Regardless of QmaxLead, the reactive power injection is still limited by dynamic headroom when actual real power output exceeds 0%

DSS property name: QMaxLead, DSS property index: 8.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

Slope: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per-unit reactive power injection / per-unit voltage deviation from Vreg; defaults to 50.

Unlike InvControl, base reactive power is constant at the inverter kva rating.

DSS property name: Slope, DSS property index: 3.

TResponse: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Open-loop response time for changes in Q.

The value of Q reaches 90% of the target change within Tresponse, which corresponds to a low-pass filter having tau = Tresponse / 2.3026. The behavior is similar to LPFTAU in InvControl, but here the response time is input instead of the time constant. IEEE1547-2018 default is 10s for Category A and 5s for Category B, adjustable from 1s to 90s for both categories. However, the default is 0 for backward compatibility of OpenDSS models.

DSS property name: TResponse, DSS property index: 13.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at all terminals of the circuit elements in this batch.

The resulting array is equivalent to concatenating the TotalPowers for each element.

VReg: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per-unit voltage at which reactive power is zero; defaults to 1.0.

This may dynamically self-adjust when VregTau > 0, limited by VregMin and VregMax.If input as 0, Vreg will be initialized from a snapshot solution with no inverter Q.The equilibrium point of reactive power is also affected by Qbias

DSS property name: VReg, DSS property index: 2.

VRegMax: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Upper limit on adaptive Vreg; defaults to 1.05 per-unit

DSS property name: VRegMax, DSS property index: 7.

VRegMin: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Lower limit on adaptive Vreg; defaults to 0.95 per-unit

DSS property name: VRegMin, DSS property index: 6.

VRegTau: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Time constant for adaptive Vreg. Defaults to 1200 seconds.

When the control injects or absorbs reactive power due to a voltage deviation from the Q=0 crossing of the volt-var curve, the Q=0 crossing will move toward the actual terminal voltage with this time constant. Over time, the effect is to gradually bring inverter reactive power to zero as the grid voltage changes due to non-solar effects. If zero, then Vreg stays fixed. IEEE1547-2018 requires adjustability from 300s to 5000s

DSS property name: VRegTau, DSS property index: 4.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

__call__()#
__contains__(name: str) bool#
__getitem__(name_or_idx)#
__init__(iobj)#
__iter__()#
__len__() int#
batch(**kwargs)#

Creates a new batch handler of (existing) objects

batch_new(names: Optional[List[AnyStr]] = None, *, df=None, count: Optional[int] = None, begin_edit: Optional[bool] = None, **kwargs: typing_extensions.Unpack[altdss.ExpControl.ExpControlBatchProperties]) altdss.ExpControl.ExpControlBatch#

Creates a new batch of ExpControl objects

Either names, count or df is required.

Parameters:
  • begin_edit – The argument begin_edit indicates if the user want to leave the elements in the edit state, and requires a call to end_edit() or equivalent. The default begin_edit is set to None. With None, the behavior will be adjusted according the default of how the batch is created.

  • **kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

  • names – When using a list of names, each new object will match the names from this list. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • count – When using count, new objects will be created with based on a random prefix, with an increasing integer up to count. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • df – Currently EXPERIMENTAL AND LIMITED, tries to get the columns from a dataframe to populate the names and the DSS properties. begin_edit defaults to False.

Returns:

Returns the new batch of DSS objects, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.ExpControl.ExpControlBatchProperties]) altdss.ExpControl.ExpControlBatch#

Edit this ExpControl batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

find(name_or_idx: Union[AnyStr, int]) altdss.DSSObj.DSSObj#

Returns an object from the collection by name or index; the index must be zero-based.

new(name: AnyStr, *, begin_edit: Optional[bool] = None, activate=False, **kwargs: typing_extensions.Unpack[altdss.ExpControl.ExpControlProperties]) altdss.ExpControl.ExpControl#

Creates a new ExpControl.

Parameters:
  • name – The object’s name is a required positional argument.

  • activate – Activation (setting activate to true) is useful for integration with the classic API, and some internal OpenDSS commands. If you interact with this object only via the Alt API, no need to activate it (due to performance costs).

  • begin_edit – This controls how the edit context is left after the object creation:

  • True: The object will be left in the edit state, requiring an end_edit call or equivalent.

  • False: No edit context is started.

  • None: If no properties are passed as keyword arguments, the object will be left in the edit state (assumes the user will fill the properties from Python attributes). Otherwise, the internal edit context will be finalized.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns the new DSS object, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#