altdss.Load

Contents

altdss.Load#

Module Contents#

Classes#

ILoad

Load

LoadBatch

LoadBatchProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

LoadProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

API#

class altdss.Load.ILoad(iobj)#

Bases: altdss.DSSObj.IDSSObj, altdss.Load.LoadBatch

AllocationFactor: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.5. Allocation factor for allocating loads based on connected kVA at a bus. Side effect: kW, PF, and kvar are modified by multiplying this factor times the XFKVA (if > 0).

DSS property name: AllocationFactor, DSS property index: 22.

BaseFreq: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 40.

Bus1: List[str]#

‘property(…)’

Bus to which the load is connected. May include specific node specification.

DSS property name: Bus1, DSS property index: 2.

CFactor: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Factor relating average kW to peak kW. Default is 4.0. See kWh and kWhdays. See kVA.

DSS property name: CFactor, DSS property index: 30.

CVRCurve: List[altdss.LoadShape.LoadShape]#

‘property(…)’

Default is NONE. Curve describing both watt and var factors as a function of time. Refers to a LoadShape object with both Mult and Qmult defined. Define a Loadshape to agree with yearly or daily curve according to the type of analysis being done. If NONE, the CVRwatts and CVRvars factors are used and assumed constant.

DSS property name: CVRCurve, DSS property index: 31.

CVRCurve_str: List[str]#

‘property(…)’

Default is NONE. Curve describing both watt and var factors as a function of time. Refers to a LoadShape object with both Mult and Qmult defined. Define a Loadshape to agree with yearly or daily curve according to the type of analysis being done. If NONE, the CVRwatts and CVRvars factors are used and assumed constant.

DSS property name: CVRCurve, DSS property index: 31.

CVRVars: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent reduction in reactive power (vars) per 1% reduction in voltage from 100% rated. Default=2. Typical values range from 2 to 3. Applies to Model=4 only. Intended to represent conservation voltage reduction or voltage optimization measures.

DSS property name: CVRVars, DSS property index: 27.

CVRWatts: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent reduction in active power (watts) per 1% reduction in voltage from 100% rated. Default=1. Typical values range from 0.4 to 0.8. Applies to Model=4 only. Intended to represent conservation voltage reduction or voltage optimization measures.

DSS property name: CVRWatts, DSS property index: 26.

Class: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

An arbitrary integer number representing the class of load so that load values may be segregated by load value. Default is 1; not used internally.

DSS property name: Class, DSS property index: 16.

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Conn: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

={wye or LN | delta or LL}. Default is wye.

DSS property name: Conn, DSS property index: 11.

Conn_str: List[str]#

‘property(…)’

={wye or LN | delta or LL}. Default is wye.

DSS property name: Conn, DSS property index: 11.

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

CurrentsMagAng() altdss.types.Float64Array#

Currents in magnitude, angle (degrees) format as a array of doubles.

Original COM help: https://opendss.epri.com/CurrentsMagAng.html

Daily: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Default is no variation (constant) if not defined. Side effect: Sets Yearly load shape if not already defined.

DSS property name: Daily, DSS property index: 8.

Daily_str: List[str]#

‘property(…)’

LOADSHAPE object to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Default is no variation (constant) if not defined. Side effect: Sets Yearly load shape if not already defined.

DSS property name: Daily, DSS property index: 8.

Duty: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for duty cycle simulations. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.Set to NONE to reset to no loadshape. Set Status=Fixed to ignore Loadshape designation. Defaults to Daily curve If not specified.

DSS property name: Duty, DSS property index: 9.

Duty_str: List[str]#

‘property(…)’

LOADSHAPE object to use for duty cycle simulations. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.Set to NONE to reset to no loadshape. Set Status=Fixed to ignore Loadshape designation. Defaults to Daily curve If not specified.

DSS property name: Duty, DSS property index: 9.

Enabled: List[bool]#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 41.

EnergyMeter() List[altdss.DSSObj.DSSObj]#
EnergyMeterName() List[str]#
FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

GUID() List[str]#

GUID/UUID for each object. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

Growth: List[altdss.GrowthShape.GrowthShape]#

‘property(…)’

Characteristic to use for growth factors by years. Must be previously defined as a Growthshape object. Defaults to circuit default growth factor (see Set Growth command).

DSS property name: Growth, DSS property index: 10.

Growth_str: List[str]#

‘property(…)’

Characteristic to use for growth factors by years. Must be previously defined as a Growthshape object. Defaults to circuit default growth factor (see Set Growth command).

DSS property name: Growth, DSS property index: 10.

Handle() altdss.types.Int32Array#

Index of each element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() altdss.types.BoolArray#

For each element in the batch: returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() altdss.types.BoolArray#

For each element in the batch: returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 42.

Losses() altdss.types.ComplexArray#

For each element in the batch: total losses in the element, in VA (watts, vars).

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) altdss.types.Float64Array#

Returns the maximum current (magnitude) at the specified terminal for each element in this batch. Use -1 as terminal to get the value across all terminals.

Model: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Integer code for the model to use for load variation with voltage. Valid values are:

1:Standard constant P+jQ load. (Default) 2:Constant impedance load. 3:Const P, Quadratic Q (like a motor). 4:Nominal Linear P, Quadratic Q (feeder mix). Use this with CVRfactor. 5:Constant Current Magnitude 6:Const P, Fixed Q 7:Const P, Fixed Impedance Q 8:ZIPV (7 values)

For Types 6 and 7, only the P is modified by load multipliers.

DSS property name: Model, DSS property index: 6.

property Name: List[str]#
NumConductors() altdss.types.Int32Array#

Number of conductors per terminal for each element in the batch.

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() altdss.types.Int32Array#

Number of controllers connected to each device in the batch.

Original COM help: https://opendss.epri.com/NumControls.html

NumCust: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of customers, this load. Default is 1.

DSS property name: NumCust, DSS property index: 32.

NumPhases() altdss.types.Int32Array#

Number of Phases for each element in this batch.

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() altdss.types.Int32Array#

Number of terminals for each Circuit Element in the batch.

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() List[Union[altdss.DSSObj.DSSObj, None]]#

Returns (as a list of Python objects) the OCP device controlling each element.

OCPDeviceIndex() altdss.types.Int32Array#

For each element in the batch: index into each controller list of the OCP Device controlling each circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() List[dss.enums.OCPDevType]#

For each element in the batch: type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

PF: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Load power factor. Enter negative for leading powerfactor (when kW and kvar have opposite signs.)

DSS property name: PF, DSS property index: 5.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of Phases, this load. Load is evenly divided among phases.

DSS property name: Phases, DSS property index: 1.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal, of each element in the batch.

Original COM help: https://opendss.epri.com/Powers.html

RNeut: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default is -1. Neutral resistance of wye (star)-connected load in actual ohms. If entered as a negative value, the neutral can be open, or floating, or it can be connected to node 0 (ground), which is the usual default. If >=0 be sure to explicitly specify the node connection for the neutral, or last, conductor. Otherwise, the neutral impedance will be shorted to ground.

DSS property name: RNeut, DSS property index: 13.

RelWeight: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Relative weighting factor for reliability calcs. Default = 1. Used to designate high priority loads such as hospitals, etc.

Is multiplied by number of customers and load kW during reliability calcs.

DSS property name: RelWeight, DSS property index: 35.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

Spectrum: List[altdss.Spectrum.Spectrum]#

‘property(…)’

Name of harmonic current spectrum for this load. Default is “defaultload”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 39.

Spectrum_str: List[str]#

‘property(…)’

Name of harmonic current spectrum for this load. Default is “defaultload”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 39.

Status: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

={Variable | Fixed | Exempt}. Default is variable. If Fixed, no load multipliers apply; however, growth multipliers do apply. All multipliers apply to Variable loads. Exempt loads are not modified by the global load multiplier, such as in load duration curves, etc. Daily multipliers do apply, so setting this property to Exempt is a good way to represent industrial load that stays the same day-after-day for the period study.

DSS property name: Status, DSS property index: 15.

Status_str: List[str]#

‘property(…)’

={Variable | Fixed | Exempt}. Default is variable. If Fixed, no load multipliers apply; however, growth multipliers do apply. All multipliers apply to Variable loads. Exempt loads are not modified by the global load multiplier, such as in load duration curves, etc. Daily multipliers do apply, so setting this property to Exempt is a good way to represent industrial load that stays the same day-after-day for the period study.

DSS property name: Status, DSS property index: 15.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at all terminals of the circuit elements in this batch.

The resulting array is equivalent to concatenating the TotalPowers for each element.

VLowpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.50. Per unit voltage at which the model switches to same as constant Z model (model=2). This allows more consistent convergence at very low voltaes due to opening switches or solving for fault situations.

DSS property name: VLowpu, DSS property index: 36.

VMaxpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 1.05. Maximum per unit voltage for which the MODEL is assumed to apply. Above this value, the load model reverts to a constant impedance model.

DSS property name: VMaxpu, DSS property index: 18.

VMinEmerg: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Minimum per unit voltage for load UE evaluations, Emergency limit. Default = 0, which defaults to system “vminemerg” property (see Set Command under Executive). If this property is specified, it ALWAYS overrides the system specification. This allows you to have different criteria for different loads. Set to zero to revert to the default system value.

DSS property name: VMinEmerg, DSS property index: 20.

VMinNorm: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Minimum per unit voltage for load EEN evaluations, Normal limit. Default = 0, which defaults to system “vminnorm” property (see Set Command under Executive). If this property is specified, it ALWAYS overrides the system specification. This allows you to have different criteria for different loads. Set to zero to revert to the default system value.

DSS property name: VMinNorm, DSS property index: 19.

VMinpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.95. Minimum per unit voltage for which the MODEL is assumed to apply. Lower end of normal voltage range.Below this value, the load model reverts to a constant impedance model that matches the model at the transition voltage. See also “Vlowpu” which causes the model to match Model=2 below the transition voltage.

DSS property name: VMinpu, DSS property index: 17.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

XNeut: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Neutral reactance of wye(star)-connected load in actual ohms. May be + or -.

DSS property name: XNeut, DSS property index: 14.

XRHarm: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

X/R ratio of the special harmonics mode reactance specified by the puXHARM property at fundamental frequency. Default is 6.

DSS property name: XRHarm, DSS property index: 38.

XfkVA: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.0. Rated kVA of service transformer for allocating loads based on connected kVA at a bus. Side effect: kW, PF, and kvar are modified. See help on kVA.

DSS property name: XfkVA, DSS property index: 21.

Yearly: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for yearly simulations. Must be previously defined as a Loadshape object. Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. The default is no variation.

DSS property name: Yearly, DSS property index: 7.

Yearly_str: List[str]#

‘property(…)’

LOADSHAPE object to use for yearly simulations. Must be previously defined as a Loadshape object. Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. The default is no variation.

DSS property name: Yearly, DSS property index: 7.

ZIPV: List[altdss.types.Float64Array]#

‘property(…)’

Array of 7 coefficients:

First 3 are ZIP weighting factors for real power (should sum to 1) Next 3 are ZIP weighting factors for reactive power (should sum to 1) Last 1 is cut-off voltage in p.u. of base kV; load is 0 below this cut-off No defaults; all coefficients must be specified if using model=8.

DSS property name: ZIPV, DSS property index: 33.

__call__()#
__contains__(name: str) bool#
__getitem__(name_or_idx)#
__init__(iobj)#
__iter__()#
__len__() int#
batch(**kwargs)#

Creates a new batch handler of (existing) objects

batch_new(names: Optional[List[AnyStr]] = None, *, df=None, count: Optional[int] = None, begin_edit: Optional[bool] = None, **kwargs: typing_extensions.Unpack[altdss.Load.LoadBatchProperties]) altdss.Load.LoadBatch#

Creates a new batch of Load objects

Either names, count or df is required.

Parameters:
  • begin_edit – The argument begin_edit indicates if the user want to leave the elements in the edit state, and requires a call to end_edit() or equivalent. The default begin_edit is set to None. With None, the behavior will be adjusted according the default of how the batch is created.

  • **kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

  • names – When using a list of names, each new object will match the names from this list. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • count – When using count, new objects will be created with based on a random prefix, with an increasing integer up to count. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • df – Currently EXPERIMENTAL AND LIMITED, tries to get the columns from a dataframe to populate the names and the DSS properties. begin_edit defaults to False.

Returns:

Returns the new batch of DSS objects, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Load.LoadBatchProperties]) altdss.Load.LoadBatch#

Edit this Load batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

find(name_or_idx: Union[AnyStr, int]) altdss.DSSObj.DSSObj#

Returns an object from the collection by name or index; the index must be zero-based.

kV: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Nominal rated (1.0 per unit) voltage, kV, for load. For 2- and 3-phase loads, specify phase-phase kV. Otherwise, specify actual kV across each branch of the load. If wye (star), specify phase-neutral kV. If delta or phase-phase connected, specify phase-phase kV.

DSS property name: kV, DSS property index: 3.

kVA: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Specify base Load in kVA (and power factor)

Legal ways to define base load: kW, PF kW, kvar kVA, PF XFKVA * Allocationfactor, PF kWh/(kWhdays*24) * Cfactor, PF

DSS property name: kVA, DSS property index: 23.

kW: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Total base kW for the load. Normally, you would enter the maximum kW for the load for the first year and allow it to be adjusted by the load shapes, growth shapes, and global load multiplier.

Legal ways to define base load: kW, PF kW, kvar kVA, PF XFKVA * Allocationfactor, PF kWh/(kWhdays*24) * Cfactor, PF

DSS property name: kW, DSS property index: 4.

kWh: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

kWh billed for this period. Default is 0. See help on kVA and Cfactor and kWhDays.

DSS property name: kWh, DSS property index: 28.

kWhDays: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Length of kWh billing period in days (24 hr days). Default is 30. Average demand is computed using this value.

DSS property name: kWhDays, DSS property index: 29.

kvar: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Specify the base kvar for specifying load as kW & kvar. Assumes kW has been already defined. Alternative to specifying the power factor. Side effect: the power factor and kVA is altered to agree.

DSS property name: kvar, DSS property index: 12.

new(name: AnyStr, *, begin_edit: Optional[bool] = None, activate=False, **kwargs: typing_extensions.Unpack[altdss.Load.LoadProperties]) altdss.Load.Load#

Creates a new Load.

Parameters:
  • name – The object’s name is a required positional argument.

  • activate – Activation (setting activate to true) is useful for integration with the classic API, and some internal OpenDSS commands. If you interact with this object only via the Alt API, no need to activate it (due to performance costs).

  • begin_edit – This controls how the edit context is left after the object creation:

  • True: The object will be left in the edit state, requiring an end_edit call or equivalent.

  • False: No edit context is started.

  • None: If no properties are passed as keyword arguments, the object will be left in the edit state (assumes the user will fill the properties from Python attributes). Otherwise, the internal edit context will be finalized.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns the new DSS object, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

pctMean: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent mean value for load to use for monte carlo studies if no loadshape is assigned to this load. Default is 50.

DSS property name: %Mean, DSS property index: 24.

pctSeriesRL: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent of load that is series R-L for Harmonic studies. Default is 50. Remainder is assumed to be parallel R and L. This can have a significant impact on the amount of damping observed in Harmonics solutions.

DSS property name: %SeriesRL, DSS property index: 34.

pctStdDev: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent Std deviation value for load to use for monte carlo studies if no loadshape is assigned to this load. Default is 10.

DSS property name: %StdDev, DSS property index: 25.

puXHarm: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Special reactance, pu (based on kVA, kV properties), for the series impedance branch in the load model for HARMONICS analysis. Generally used to represent motor load blocked rotor reactance. If not specified (that is, set =0, the default value), the series branch is computed from the percentage of the nominal load at fundamental frequency specified by the %SERIESRL property.

Applies to load model in HARMONICS mode only.

A typical value would be approximately 0.20 pu based on kVA * %SeriesRL / 100.0.

DSS property name: puXHarm, DSS property index: 37.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#
class altdss.Load.Load(api_util, ptr)#

Bases: altdss.DSSObj.DSSObj, altdss.CircuitElement.CircuitElementMixin, altdss.PCElement.PCElementMixin

AllocationFactor: float#

‘property(…)’

Default = 0.5. Allocation factor for allocating loads based on connected kVA at a bus. Side effect: kW, PF, and kvar are modified by multiplying this factor times the XFKVA (if > 0).

DSS property name: AllocationFactor, DSS property index: 22.

BaseFreq: float#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 40.

Bus1: str#

‘property(…)’

Bus to which the load is connected. May include specific node specification.

DSS property name: Bus1, DSS property index: 2.

CFactor: float#

‘property(…)’

Factor relating average kW to peak kW. Default is 4.0. See kWh and kWhdays. See kVA.

DSS property name: CFactor, DSS property index: 30.

CVRCurve: altdss.LoadShape.LoadShape#

‘property(…)’

Default is NONE. Curve describing both watt and var factors as a function of time. Refers to a LoadShape object with both Mult and Qmult defined. Define a Loadshape to agree with yearly or daily curve according to the type of analysis being done. If NONE, the CVRwatts and CVRvars factors are used and assumed constant.

DSS property name: CVRCurve, DSS property index: 31.

CVRCurve_str: str#

‘property(…)’

Default is NONE. Curve describing both watt and var factors as a function of time. Refers to a LoadShape object with both Mult and Qmult defined. Define a Loadshape to agree with yearly or daily curve according to the type of analysis being done. If NONE, the CVRwatts and CVRvars factors are used and assumed constant.

DSS property name: CVRCurve, DSS property index: 31.

CVRVars: float#

‘property(…)’

Percent reduction in reactive power (vars) per 1% reduction in voltage from 100% rated. Default=2. Typical values range from 2 to 3. Applies to Model=4 only. Intended to represent conservation voltage reduction or voltage optimization measures.

DSS property name: CVRVars, DSS property index: 27.

CVRWatts: float#

‘property(…)’

Percent reduction in active power (watts) per 1% reduction in voltage from 100% rated. Default=1. Typical values range from 0.4 to 0.8. Applies to Model=4 only. Intended to represent conservation voltage reduction or voltage optimization measures.

DSS property name: CVRWatts, DSS property index: 26.

Class: int#

‘property(…)’

An arbitrary integer number representing the class of load so that load values may be segregated by load value. Default is 1; not used internally.

DSS property name: Class, DSS property index: 16.

Close(terminal: int, phase: int) None#

Close the specified terminal and phase, if non-zero, or all conductors at the terminal.

Original COM help: https://opendss.epri.com/Close1.html

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Conn: altdss.enums.Connection#

‘property(…)’

={wye or LN | delta or LL}. Default is wye.

DSS property name: Conn, DSS property index: 11.

Conn_str: str#

‘property(…)’

={wye or LN | delta or LL}. Default is wye.

DSS property name: Conn, DSS property index: 11.

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

Daily: altdss.LoadShape.LoadShape#

‘property(…)’

LOADSHAPE object to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Default is no variation (constant) if not defined. Side effect: Sets Yearly load shape if not already defined.

DSS property name: Daily, DSS property index: 8.

Daily_str: str#

‘property(…)’

LOADSHAPE object to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Default is no variation (constant) if not defined. Side effect: Sets Yearly load shape if not already defined.

DSS property name: Daily, DSS property index: 8.

DisplayName: str#

‘property(…)’

Display name of the object (not necessarily unique)

Original COM help: https://opendss.epri.com/DisplayName.html

Duty: altdss.LoadShape.LoadShape#

‘property(…)’

LOADSHAPE object to use for duty cycle simulations. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.Set to NONE to reset to no loadshape. Set Status=Fixed to ignore Loadshape designation. Defaults to Daily curve If not specified.

DSS property name: Duty, DSS property index: 9.

Duty_str: str#

‘property(…)’

LOADSHAPE object to use for duty cycle simulations. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.Set to NONE to reset to no loadshape. Set Status=Fixed to ignore Loadshape designation. Defaults to Daily curve If not specified.

DSS property name: Duty, DSS property index: 9.

Enabled: bool#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 41.

EnergyMeter() altdss.DSSObj.DSSObj#

Energy Meter this element is assigned to.

Requires an energy meter with an updated zone.

Original COM help: https://opendss.epri.com/EnergyMeter.html

EnergyMeterName() str#

Name of the Energy Meter this element is assigned to.

Requires an energy meter with an updated zone.

Original COM help: https://opendss.epri.com/EnergyMeter.html

FullName() str#
GUID() str#

Object’s GUID/UUID. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

GetVariableValue(varIdxName: Union[AnyStr, int]) float#
Growth: altdss.GrowthShape.GrowthShape#

‘property(…)’

Characteristic to use for growth factors by years. Must be previously defined as a Growthshape object. Defaults to circuit default growth factor (see Set Growth command).

DSS property name: Growth, DSS property index: 10.

Growth_str: str#

‘property(…)’

Characteristic to use for growth factors by years. Must be previously defined as a Growthshape object. Defaults to circuit default growth factor (see Set Growth command).

DSS property name: Growth, DSS property index: 10.

Handle() int#

Index of this element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() bool#

Returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() bool#

Returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() bool#

Returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() bool#

Returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

IsOpen(terminal: int, phase: int) bool#

Returns true if the specified terminal and phase are open.

If the phase parameter is zero, returns if any conductor at the terminal is open.

Like(value: AnyStr)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 42.

Losses() complex#

Total (complex) losses in the element, in VA (watts, vars)

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) float#

Returns the maximum current (magnitude) at the specified terminal. Use -1 as terminal to get the value across all terminals.

Model: altdss.enums.LoadModel#

‘property(…)’

Integer code for the model to use for load variation with voltage. Valid values are:

1:Standard constant P+jQ load. (Default) 2:Constant impedance load. 3:Const P, Quadratic Q (like a motor). 4:Nominal Linear P, Quadratic Q (feeder mix). Use this with CVRfactor. 5:Constant Current Magnitude 6:Const P, Fixed Q 7:Const P, Fixed Impedance Q 8:ZIPV (7 values)

For Types 6 and 7, only the P is modified by load multipliers.

DSS property name: Model, DSS property index: 6.

property Name: str#
NodeOrder() altdss.types.Int32Array#

Array of integer containing the node numbers (representing phases, for example) for each conductor of each terminal.

Be sure to run a solution to initialize the values after the circuit is created or modified.

NodeRef() altdss.types.Int32Array#

Array of integers, a copy of the internal NodeRef of the CktElement.

Be sure to run a solution to initialize the values after the circuit is created or modified.

NumConductors() int#

Number of conductors per terminal

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() int#

Number of controllers connected to this device.

Original COM help: https://opendss.epri.com/NumControls.html

NumCust: int#

‘property(…)’

Number of customers, this load. Default is 1.

DSS property name: NumCust, DSS property index: 32.

NumPhases() int#

Number of phases

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() int#

Number of terminals in this circuit element

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() Union[altdss.DSSObj.DSSObj, None]#

Returns (as a Python object) the OCP device controlling this element, if any.

OCPDeviceIndex() int#

Index into controller list of OCP Device controlling this circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() dss.enums.OCPDevType#

Type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

Open(terminal: int, phase: int) None#

Open the specified terminal and phase, if non-zero, or all conductors at the terminal.

Original COM help: https://opendss.epri.com/Open1.html

PF: float#

‘property(…)’

Load power factor. Enter negative for leading powerfactor (when kW and kvar have opposite signs.)

DSS property name: PF, DSS property index: 5.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: int#

‘property(…)’

Number of Phases, this load. Load is evenly divided among phases.

DSS property name: Phases, DSS property index: 1.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal

Original COM help: https://opendss.epri.com/Powers.html

RNeut: float#

‘property(…)’

Default is -1. Neutral resistance of wye (star)-connected load in actual ohms. If entered as a negative value, the neutral can be open, or floating, or it can be connected to node 0 (ground), which is the usual default. If >=0 be sure to explicitly specify the node connection for the neutral, or last, conductor. Otherwise, the neutral impedance will be shorted to ground.

DSS property name: RNeut, DSS property index: 13.

RelWeight: float#

‘property(…)’

Relative weighting factor for reliability calcs. Default = 1. Used to designate high priority loads such as hospitals, etc.

Is multiplied by number of customers and load kW during reliability calcs.

DSS property name: RelWeight, DSS property index: 35.

Residuals() altdss.types.Float64Array#

Residual currents for each terminal: (magnitude, angle in degrees)

Original COM help: https://opendss.epri.com/Residuals.html

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

SetVariableValue(varIdxName: Union[AnyStr, int], value: float)#
Spectrum: altdss.Spectrum.Spectrum#

‘property(…)’

Name of harmonic current spectrum for this load. Default is “defaultload”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 39.

Spectrum_str: str#

‘property(…)’

Name of harmonic current spectrum for this load. Default is “defaultload”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 39.

Status: altdss.enums.LoadStatus#

‘property(…)’

={Variable | Fixed | Exempt}. Default is variable. If Fixed, no load multipliers apply; however, growth multipliers do apply. All multipliers apply to Variable loads. Exempt loads are not modified by the global load multiplier, such as in load duration curves, etc. Daily multipliers do apply, so setting this property to Exempt is a good way to represent industrial load that stays the same day-after-day for the period study.

DSS property name: Status, DSS property index: 15.

Status_str: str#

‘property(…)’

={Variable | Fixed | Exempt}. Default is variable. If Fixed, no load multipliers apply; however, growth multipliers do apply. All multipliers apply to Variable loads. Exempt loads are not modified by the global load multiplier, such as in load duration curves, etc. Daily multipliers do apply, so setting this property to Exempt is a good way to represent industrial load that stays the same day-after-day for the period study.

DSS property name: Status, DSS property index: 15.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at ALL terminals of the active circuit element.

Original COM help: https://opendss.epri.com/TotalPowers.html

VLowpu: float#

‘property(…)’

Default = 0.50. Per unit voltage at which the model switches to same as constant Z model (model=2). This allows more consistent convergence at very low voltaes due to opening switches or solving for fault situations.

DSS property name: VLowpu, DSS property index: 36.

VMaxpu: float#

‘property(…)’

Default = 1.05. Maximum per unit voltage for which the MODEL is assumed to apply. Above this value, the load model reverts to a constant impedance model.

DSS property name: VMaxpu, DSS property index: 18.

VMinEmerg: float#

‘property(…)’

Minimum per unit voltage for load UE evaluations, Emergency limit. Default = 0, which defaults to system “vminemerg” property (see Set Command under Executive). If this property is specified, it ALWAYS overrides the system specification. This allows you to have different criteria for different loads. Set to zero to revert to the default system value.

DSS property name: VMinEmerg, DSS property index: 20.

VMinNorm: float#

‘property(…)’

Minimum per unit voltage for load EEN evaluations, Normal limit. Default = 0, which defaults to system “vminnorm” property (see Set Command under Executive). If this property is specified, it ALWAYS overrides the system specification. This allows you to have different criteria for different loads. Set to zero to revert to the default system value.

DSS property name: VMinNorm, DSS property index: 19.

VMinpu: float#

‘property(…)’

Default = 0.95. Minimum per unit voltage for which the MODEL is assumed to apply. Lower end of normal voltage range.Below this value, the load model reverts to a constant impedance model that matches the model at the transition voltage. See also “Vlowpu” which causes the model to match Model=2 below the transition voltage.

DSS property name: VMinpu, DSS property index: 17.

VariableNames() List[str]#
VariableValues() altdss.types.Float64Array#
VariablesDict() Dict[str, float]#
Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

XNeut: float#

‘property(…)’

Neutral reactance of wye(star)-connected load in actual ohms. May be + or -.

DSS property name: XNeut, DSS property index: 14.

XRHarm: float#

‘property(…)’

X/R ratio of the special harmonics mode reactance specified by the puXHARM property at fundamental frequency. Default is 6.

DSS property name: XRHarm, DSS property index: 38.

XfkVA: float#

‘property(…)’

Default = 0.0. Rated kVA of service transformer for allocating loads based on connected kVA at a bus. Side effect: kW, PF, and kvar are modified. See help on kVA.

DSS property name: XfkVA, DSS property index: 21.

YPrim() altdss.types.ComplexArray#

YPrim matrix, column order, complex numbers

Original COM help: https://opendss.epri.com/Yprim.html

Yearly: altdss.LoadShape.LoadShape#

‘property(…)’

LOADSHAPE object to use for yearly simulations. Must be previously defined as a Loadshape object. Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. The default is no variation.

DSS property name: Yearly, DSS property index: 7.

Yearly_str: str#

‘property(…)’

LOADSHAPE object to use for yearly simulations. Must be previously defined as a Loadshape object. Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. The default is no variation.

DSS property name: Yearly, DSS property index: 7.

ZIPV: altdss.types.Float64Array#

‘property(…)’

Array of 7 coefficients:

First 3 are ZIP weighting factors for real power (should sum to 1) Next 3 are ZIP weighting factors for reactive power (should sum to 1) Last 1 is cut-off voltage in p.u. of base kV; load is 0 below this cut-off No defaults; all coefficients must be specified if using model=8.

DSS property name: ZIPV, DSS property index: 33.

__hash__()#

Return hash(self).

__init__(api_util, ptr)#
__ne__(other)#

Return self!=value.

__repr__()#

Return repr(self).

begin_edit() None#

Marks a DSS object for editing

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Load.LoadProperties]) altdss.Load.Load#

Edit this Load.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS Edit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing state of a DSS object

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

kV: float#

‘property(…)’

Nominal rated (1.0 per unit) voltage, kV, for load. For 2- and 3-phase loads, specify phase-phase kV. Otherwise, specify actual kV across each branch of the load. If wye (star), specify phase-neutral kV. If delta or phase-phase connected, specify phase-phase kV.

DSS property name: kV, DSS property index: 3.

kVA: float#

‘property(…)’

Specify base Load in kVA (and power factor)

Legal ways to define base load: kW, PF kW, kvar kVA, PF XFKVA * Allocationfactor, PF kWh/(kWhdays*24) * Cfactor, PF

DSS property name: kVA, DSS property index: 23.

kW: float#

‘property(…)’

Total base kW for the load. Normally, you would enter the maximum kW for the load for the first year and allow it to be adjusted by the load shapes, growth shapes, and global load multiplier.

Legal ways to define base load: kW, PF kW, kvar kVA, PF XFKVA * Allocationfactor, PF kWh/(kWhdays*24) * Cfactor, PF

DSS property name: kW, DSS property index: 4.

kWh: float#

‘property(…)’

kWh billed for this period. Default is 0. See help on kVA and Cfactor and kWhDays.

DSS property name: kWh, DSS property index: 28.

kWhDays: float#

‘property(…)’

Length of kWh billing period in days (24 hr days). Default is 30. Average demand is computed using this value.

DSS property name: kWhDays, DSS property index: 29.

kvar: float#

‘property(…)’

Specify the base kvar for specifying load as kW & kvar. Assumes kW has been already defined. Alternative to specifying the power factor. Side effect: the power factor and kVA is altered to agree.

DSS property name: kvar, DSS property index: 12.

pctMean: float#

‘property(…)’

Percent mean value for load to use for monte carlo studies if no loadshape is assigned to this load. Default is 50.

DSS property name: %Mean, DSS property index: 24.

pctSeriesRL: float#

‘property(…)’

Percent of load that is series R-L for Harmonic studies. Default is 50. Remainder is assumed to be parallel R and L. This can have a significant impact on the amount of damping observed in Harmonics solutions.

DSS property name: %SeriesRL, DSS property index: 34.

pctStdDev: float#

‘property(…)’

Percent Std deviation value for load to use for monte carlo studies if no loadshape is assigned to this load. Default is 10.

DSS property name: %StdDev, DSS property index: 25.

puXHarm: float#

‘property(…)’

Special reactance, pu (based on kVA, kV properties), for the series impedance branch in the load model for HARMONICS analysis. Generally used to represent motor load blocked rotor reactance. If not specified (that is, set =0, the default value), the series branch is computed from the percentage of the nominal load at fundamental frequency specified by the %SERIESRL property.

Applies to load model in HARMONICS mode only.

A typical value would be approximately 0.20 pu based on kVA * %SeriesRL / 100.0.

DSS property name: puXHarm, DSS property index: 37.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns an element’s data as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features.

By default (options = 0), only the properties explicitly set. The properties are returned in the order they are set in the input. As a reminder, OpenDSS is sensitive to the order of the properties.

The options bit-flags are available in the DSSJSONFlags enum. Values used by this function are:

  • Full: if set, all properties are returned, ordered by property index instead.

  • SkipRedundant: if used with Full, all properties except redundant and unused ones are returned.

  • EnumAsInt: enumerated properties are returned as integer values instead of strings.

  • FullNames: any element reference will use the full name ({class name}.{element name}) even if not required.

  • Pretty: more whitespace is used in the output for a “prettier” format.

  • SkipDSSClass: do not add the “DSSClass” property to the JSON objects.

NOT IMPLEMENTED YET:

  • State: include run-time state information

  • Debug: include debug information

Other bit-flags are reserved for future uses. Please use DSSJSONFlags enum to avoid potential conflicts.

(API Extension)

class altdss.Load.LoadBatch(api_util, **kwargs)#

Bases: altdss.Batch.DSSBatch, altdss.CircuitElement.CircuitElementBatchMixin, altdss.PCElement.PCElementBatchMixin

AllocationFactor: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.5. Allocation factor for allocating loads based on connected kVA at a bus. Side effect: kW, PF, and kvar are modified by multiplying this factor times the XFKVA (if > 0).

DSS property name: AllocationFactor, DSS property index: 22.

BaseFreq: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 40.

Bus1: List[str]#

‘property(…)’

Bus to which the load is connected. May include specific node specification.

DSS property name: Bus1, DSS property index: 2.

CFactor: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Factor relating average kW to peak kW. Default is 4.0. See kWh and kWhdays. See kVA.

DSS property name: CFactor, DSS property index: 30.

CVRCurve: List[altdss.LoadShape.LoadShape]#

‘property(…)’

Default is NONE. Curve describing both watt and var factors as a function of time. Refers to a LoadShape object with both Mult and Qmult defined. Define a Loadshape to agree with yearly or daily curve according to the type of analysis being done. If NONE, the CVRwatts and CVRvars factors are used and assumed constant.

DSS property name: CVRCurve, DSS property index: 31.

CVRCurve_str: List[str]#

‘property(…)’

Default is NONE. Curve describing both watt and var factors as a function of time. Refers to a LoadShape object with both Mult and Qmult defined. Define a Loadshape to agree with yearly or daily curve according to the type of analysis being done. If NONE, the CVRwatts and CVRvars factors are used and assumed constant.

DSS property name: CVRCurve, DSS property index: 31.

CVRVars: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent reduction in reactive power (vars) per 1% reduction in voltage from 100% rated. Default=2. Typical values range from 2 to 3. Applies to Model=4 only. Intended to represent conservation voltage reduction or voltage optimization measures.

DSS property name: CVRVars, DSS property index: 27.

CVRWatts: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent reduction in active power (watts) per 1% reduction in voltage from 100% rated. Default=1. Typical values range from 0.4 to 0.8. Applies to Model=4 only. Intended to represent conservation voltage reduction or voltage optimization measures.

DSS property name: CVRWatts, DSS property index: 26.

Class: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

An arbitrary integer number representing the class of load so that load values may be segregated by load value. Default is 1; not used internally.

DSS property name: Class, DSS property index: 16.

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Conn: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

={wye or LN | delta or LL}. Default is wye.

DSS property name: Conn, DSS property index: 11.

Conn_str: List[str]#

‘property(…)’

={wye or LN | delta or LL}. Default is wye.

DSS property name: Conn, DSS property index: 11.

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

CurrentsMagAng() altdss.types.Float64Array#

Currents in magnitude, angle (degrees) format as a array of doubles.

Original COM help: https://opendss.epri.com/CurrentsMagAng.html

Daily: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Default is no variation (constant) if not defined. Side effect: Sets Yearly load shape if not already defined.

DSS property name: Daily, DSS property index: 8.

Daily_str: List[str]#

‘property(…)’

LOADSHAPE object to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Default is no variation (constant) if not defined. Side effect: Sets Yearly load shape if not already defined.

DSS property name: Daily, DSS property index: 8.

Duty: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for duty cycle simulations. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.Set to NONE to reset to no loadshape. Set Status=Fixed to ignore Loadshape designation. Defaults to Daily curve If not specified.

DSS property name: Duty, DSS property index: 9.

Duty_str: List[str]#

‘property(…)’

LOADSHAPE object to use for duty cycle simulations. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.Set to NONE to reset to no loadshape. Set Status=Fixed to ignore Loadshape designation. Defaults to Daily curve If not specified.

DSS property name: Duty, DSS property index: 9.

Enabled: List[bool]#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 41.

EnergyMeter() List[altdss.DSSObj.DSSObj]#
EnergyMeterName() List[str]#
FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

GUID() List[str]#

GUID/UUID for each object. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

Growth: List[altdss.GrowthShape.GrowthShape]#

‘property(…)’

Characteristic to use for growth factors by years. Must be previously defined as a Growthshape object. Defaults to circuit default growth factor (see Set Growth command).

DSS property name: Growth, DSS property index: 10.

Growth_str: List[str]#

‘property(…)’

Characteristic to use for growth factors by years. Must be previously defined as a Growthshape object. Defaults to circuit default growth factor (see Set Growth command).

DSS property name: Growth, DSS property index: 10.

Handle() altdss.types.Int32Array#

Index of each element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() altdss.types.BoolArray#

For each element in the batch: returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() altdss.types.BoolArray#

For each element in the batch: returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 42.

Losses() altdss.types.ComplexArray#

For each element in the batch: total losses in the element, in VA (watts, vars).

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) altdss.types.Float64Array#

Returns the maximum current (magnitude) at the specified terminal for each element in this batch. Use -1 as terminal to get the value across all terminals.

Model: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Integer code for the model to use for load variation with voltage. Valid values are:

1:Standard constant P+jQ load. (Default) 2:Constant impedance load. 3:Const P, Quadratic Q (like a motor). 4:Nominal Linear P, Quadratic Q (feeder mix). Use this with CVRfactor. 5:Constant Current Magnitude 6:Const P, Fixed Q 7:Const P, Fixed Impedance Q 8:ZIPV (7 values)

For Types 6 and 7, only the P is modified by load multipliers.

DSS property name: Model, DSS property index: 6.

property Name: List[str]#
NumConductors() altdss.types.Int32Array#

Number of conductors per terminal for each element in the batch.

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() altdss.types.Int32Array#

Number of controllers connected to each device in the batch.

Original COM help: https://opendss.epri.com/NumControls.html

NumCust: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of customers, this load. Default is 1.

DSS property name: NumCust, DSS property index: 32.

NumPhases() altdss.types.Int32Array#

Number of Phases for each element in this batch.

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() altdss.types.Int32Array#

Number of terminals for each Circuit Element in the batch.

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() List[Union[altdss.DSSObj.DSSObj, None]]#

Returns (as a list of Python objects) the OCP device controlling each element.

OCPDeviceIndex() altdss.types.Int32Array#

For each element in the batch: index into each controller list of the OCP Device controlling each circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() List[dss.enums.OCPDevType]#

For each element in the batch: type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

PF: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Load power factor. Enter negative for leading powerfactor (when kW and kvar have opposite signs.)

DSS property name: PF, DSS property index: 5.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of Phases, this load. Load is evenly divided among phases.

DSS property name: Phases, DSS property index: 1.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal, of each element in the batch.

Original COM help: https://opendss.epri.com/Powers.html

RNeut: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default is -1. Neutral resistance of wye (star)-connected load in actual ohms. If entered as a negative value, the neutral can be open, or floating, or it can be connected to node 0 (ground), which is the usual default. If >=0 be sure to explicitly specify the node connection for the neutral, or last, conductor. Otherwise, the neutral impedance will be shorted to ground.

DSS property name: RNeut, DSS property index: 13.

RelWeight: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Relative weighting factor for reliability calcs. Default = 1. Used to designate high priority loads such as hospitals, etc.

Is multiplied by number of customers and load kW during reliability calcs.

DSS property name: RelWeight, DSS property index: 35.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

Spectrum: List[altdss.Spectrum.Spectrum]#

‘property(…)’

Name of harmonic current spectrum for this load. Default is “defaultload”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 39.

Spectrum_str: List[str]#

‘property(…)’

Name of harmonic current spectrum for this load. Default is “defaultload”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 39.

Status: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

={Variable | Fixed | Exempt}. Default is variable. If Fixed, no load multipliers apply; however, growth multipliers do apply. All multipliers apply to Variable loads. Exempt loads are not modified by the global load multiplier, such as in load duration curves, etc. Daily multipliers do apply, so setting this property to Exempt is a good way to represent industrial load that stays the same day-after-day for the period study.

DSS property name: Status, DSS property index: 15.

Status_str: List[str]#

‘property(…)’

={Variable | Fixed | Exempt}. Default is variable. If Fixed, no load multipliers apply; however, growth multipliers do apply. All multipliers apply to Variable loads. Exempt loads are not modified by the global load multiplier, such as in load duration curves, etc. Daily multipliers do apply, so setting this property to Exempt is a good way to represent industrial load that stays the same day-after-day for the period study.

DSS property name: Status, DSS property index: 15.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at all terminals of the circuit elements in this batch.

The resulting array is equivalent to concatenating the TotalPowers for each element.

VLowpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.50. Per unit voltage at which the model switches to same as constant Z model (model=2). This allows more consistent convergence at very low voltaes due to opening switches or solving for fault situations.

DSS property name: VLowpu, DSS property index: 36.

VMaxpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 1.05. Maximum per unit voltage for which the MODEL is assumed to apply. Above this value, the load model reverts to a constant impedance model.

DSS property name: VMaxpu, DSS property index: 18.

VMinEmerg: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Minimum per unit voltage for load UE evaluations, Emergency limit. Default = 0, which defaults to system “vminemerg” property (see Set Command under Executive). If this property is specified, it ALWAYS overrides the system specification. This allows you to have different criteria for different loads. Set to zero to revert to the default system value.

DSS property name: VMinEmerg, DSS property index: 20.

VMinNorm: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Minimum per unit voltage for load EEN evaluations, Normal limit. Default = 0, which defaults to system “vminnorm” property (see Set Command under Executive). If this property is specified, it ALWAYS overrides the system specification. This allows you to have different criteria for different loads. Set to zero to revert to the default system value.

DSS property name: VMinNorm, DSS property index: 19.

VMinpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.95. Minimum per unit voltage for which the MODEL is assumed to apply. Lower end of normal voltage range.Below this value, the load model reverts to a constant impedance model that matches the model at the transition voltage. See also “Vlowpu” which causes the model to match Model=2 below the transition voltage.

DSS property name: VMinpu, DSS property index: 17.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

XNeut: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Neutral reactance of wye(star)-connected load in actual ohms. May be + or -.

DSS property name: XNeut, DSS property index: 14.

XRHarm: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

X/R ratio of the special harmonics mode reactance specified by the puXHARM property at fundamental frequency. Default is 6.

DSS property name: XRHarm, DSS property index: 38.

XfkVA: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.0. Rated kVA of service transformer for allocating loads based on connected kVA at a bus. Side effect: kW, PF, and kvar are modified. See help on kVA.

DSS property name: XfkVA, DSS property index: 21.

Yearly: List[altdss.LoadShape.LoadShape]#

‘property(…)’

LOADSHAPE object to use for yearly simulations. Must be previously defined as a Loadshape object. Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. The default is no variation.

DSS property name: Yearly, DSS property index: 7.

Yearly_str: List[str]#

‘property(…)’

LOADSHAPE object to use for yearly simulations. Must be previously defined as a Loadshape object. Is set to the Daily load shape when Daily is defined. The daily load shape is repeated in this case. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. The default is no variation.

DSS property name: Yearly, DSS property index: 7.

ZIPV: List[altdss.types.Float64Array]#

‘property(…)’

Array of 7 coefficients:

First 3 are ZIP weighting factors for real power (should sum to 1) Next 3 are ZIP weighting factors for reactive power (should sum to 1) Last 1 is cut-off voltage in p.u. of base kV; load is 0 below this cut-off No defaults; all coefficients must be specified if using model=8.

DSS property name: ZIPV, DSS property index: 33.

__call__()#
__getitem__(idx0) altdss.DSSObj.DSSObj#

Get element at 0-based index of the batch pointer array

__init__(api_util, **kwargs)#
__iter__()#
__len__() int#
batch(**kwargs) altdss.Batch.DSSBatch#

Filter a batch using integer or float DSS properties, returning a new batch.

For integers, provide a single value to match.

For floats, provide a range as a 2-valued tuple/list (min value, max value), or an exact value to value (not recommended).

Multiple properties can be listed to allow filtering various conditions.

Example for loads:

    # Create an initial batch using a regular expression
    abc_loads = altdss.Load.batch(re=r'^abc.*$') # a batch of all loads with names starting with "abc"
    abc_loads_filtered = abc_loads.batch(Class=1, Phases=1, kV=(0.1, 1.0))

    # Create an initial batch, already filtered
    abc_loads_filtered = altdss.Load.batch(re=r'^abc.*$', Class=1, Phases=1, kV=(0.1, 1.0))
begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Load.LoadBatchProperties]) altdss.Load.LoadBatch#

Edit this Load batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

kV: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Nominal rated (1.0 per unit) voltage, kV, for load. For 2- and 3-phase loads, specify phase-phase kV. Otherwise, specify actual kV across each branch of the load. If wye (star), specify phase-neutral kV. If delta or phase-phase connected, specify phase-phase kV.

DSS property name: kV, DSS property index: 3.

kVA: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Specify base Load in kVA (and power factor)

Legal ways to define base load: kW, PF kW, kvar kVA, PF XFKVA * Allocationfactor, PF kWh/(kWhdays*24) * Cfactor, PF

DSS property name: kVA, DSS property index: 23.

kW: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Total base kW for the load. Normally, you would enter the maximum kW for the load for the first year and allow it to be adjusted by the load shapes, growth shapes, and global load multiplier.

Legal ways to define base load: kW, PF kW, kvar kVA, PF XFKVA * Allocationfactor, PF kWh/(kWhdays*24) * Cfactor, PF

DSS property name: kW, DSS property index: 4.

kWh: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

kWh billed for this period. Default is 0. See help on kVA and Cfactor and kWhDays.

DSS property name: kWh, DSS property index: 28.

kWhDays: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Length of kWh billing period in days (24 hr days). Default is 30. Average demand is computed using this value.

DSS property name: kWhDays, DSS property index: 29.

kvar: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Specify the base kvar for specifying load as kW & kvar. Assumes kW has been already defined. Alternative to specifying the power factor. Side effect: the power factor and kVA is altered to agree.

DSS property name: kvar, DSS property index: 12.

pctMean: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent mean value for load to use for monte carlo studies if no loadshape is assigned to this load. Default is 50.

DSS property name: %Mean, DSS property index: 24.

pctSeriesRL: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent of load that is series R-L for Harmonic studies. Default is 50. Remainder is assumed to be parallel R and L. This can have a significant impact on the amount of damping observed in Harmonics solutions.

DSS property name: %SeriesRL, DSS property index: 34.

pctStdDev: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Percent Std deviation value for load to use for monte carlo studies if no loadshape is assigned to this load. Default is 10.

DSS property name: %StdDev, DSS property index: 25.

puXHarm: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Special reactance, pu (based on kVA, kV properties), for the series impedance branch in the load model for HARMONICS analysis. Generally used to represent motor load blocked rotor reactance. If not specified (that is, set =0, the default value), the series branch is computed from the percentage of the nominal load at fundamental frequency specified by the %SERIESRL property.

Applies to load model in HARMONICS mode only.

A typical value would be approximately 0.20 pu based on kVA * %SeriesRL / 100.0.

DSS property name: puXHarm, DSS property index: 37.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#
class altdss.Load.LoadBatchProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

AllocationFactor: Union[float, altdss.types.Float64Array]#

None

BaseFreq: Union[float, altdss.types.Float64Array]#

None

Bus1: Union[AnyStr, List[AnyStr]]#

None

CFactor: Union[float, altdss.types.Float64Array]#

None

CVRCurve: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

CVRVars: Union[float, altdss.types.Float64Array]#

None

CVRWatts: Union[float, altdss.types.Float64Array]#

None

Class: Union[int, altdss.types.Int32Array]#

None

Conn: Union[AnyStr, int, altdss.enums.Connection, List[AnyStr], List[int], List[altdss.enums.Connection], altdss.types.Int32Array]#

None

Daily: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

Duty: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

Enabled: bool#

None

Growth: Union[AnyStr, altdss.GrowthShape.GrowthShape, List[AnyStr], List[altdss.GrowthShape.GrowthShape]]#

None

Like: AnyStr#

None

Model: Union[int, altdss.enums.LoadModel, altdss.types.Int32Array]#

None

NumCust: Union[int, altdss.types.Int32Array]#

None

PF: Union[float, altdss.types.Float64Array]#

None

Phases: Union[int, altdss.types.Int32Array]#

None

RNeut: Union[float, altdss.types.Float64Array]#

None

RelWeight: Union[float, altdss.types.Float64Array]#

None

Spectrum: Union[AnyStr, altdss.Spectrum.Spectrum, List[AnyStr], List[altdss.Spectrum.Spectrum]]#

None

Status: Union[AnyStr, int, altdss.enums.LoadStatus, List[AnyStr], List[int], List[altdss.enums.LoadStatus], altdss.types.Int32Array]#

None

VLowpu: Union[float, altdss.types.Float64Array]#

None

VMaxpu: Union[float, altdss.types.Float64Array]#

None

VMinEmerg: Union[float, altdss.types.Float64Array]#

None

VMinNorm: Union[float, altdss.types.Float64Array]#

None

VMinpu: Union[float, altdss.types.Float64Array]#

None

XNeut: Union[float, altdss.types.Float64Array]#

None

XRHarm: Union[float, altdss.types.Float64Array]#

None

XfkVA: Union[float, altdss.types.Float64Array]#

None

Yearly: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

ZIPV: altdss.types.Float64Array#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

kV: Union[float, altdss.types.Float64Array]#

None

kVA: Union[float, altdss.types.Float64Array]#

None

kW: Union[float, altdss.types.Float64Array]#

None

kWh: Union[float, altdss.types.Float64Array]#

None

kWhDays: Union[float, altdss.types.Float64Array]#

None

keys()#

D.keys() -> a set-like object providing a view on D’s keys

kvar: Union[float, altdss.types.Float64Array]#

None

pctMean: Union[float, altdss.types.Float64Array]#

None

pctSeriesRL: Union[float, altdss.types.Float64Array]#

None

pctStdDev: Union[float, altdss.types.Float64Array]#

None

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

puXHarm: Union[float, altdss.types.Float64Array]#

None

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values

class altdss.Load.LoadProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

AllocationFactor: float#

None

BaseFreq: float#

None

Bus1: AnyStr#

None

CFactor: float#

None

CVRCurve: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

CVRVars: float#

None

CVRWatts: float#

None

Class: int#

None

Conn: Union[AnyStr, int, altdss.enums.Connection]#

None

Daily: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

Duty: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

Enabled: bool#

None

Growth: Union[AnyStr, altdss.GrowthShape.GrowthShape]#

None

Like: AnyStr#

None

Model: Union[int, altdss.enums.LoadModel]#

None

NumCust: int#

None

PF: float#

None

Phases: int#

None

RNeut: float#

None

RelWeight: float#

None

Spectrum: Union[AnyStr, altdss.Spectrum.Spectrum]#

None

Status: Union[AnyStr, int, altdss.enums.LoadStatus]#

None

VLowpu: float#

None

VMaxpu: float#

None

VMinEmerg: float#

None

VMinNorm: float#

None

VMinpu: float#

None

XNeut: float#

None

XRHarm: float#

None

XfkVA: float#

None

Yearly: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

ZIPV: altdss.types.Float64Array#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

kV: float#

None

kVA: float#

None

kW: float#

None

kWh: float#

None

kWhDays: float#

None

keys()#

D.keys() -> a set-like object providing a view on D’s keys

kvar: float#

None

pctMean: float#

None

pctSeriesRL: float#

None

pctStdDev: float#

None

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

puXHarm: float#

None

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values