altdss.Generator

Contents

altdss.Generator#

Module Contents#

Classes#

Generator

GeneratorBatch

GeneratorBatchProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

GeneratorProperties

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

IGenerator

API#

class altdss.Generator.Generator(api_util, ptr)#

Bases: altdss.DSSObj.DSSObj, altdss.CircuitElement.CircuitElementMixin, altdss.PCElement.PCElementMixin, altdss.PCElement.ElementHasRegistersMixin

Balanced: bool#

‘property(…)’

{Yes | No*} Default is No. For Model=7, force balanced current only for 3-phase generators. Force zero- and negative-sequence to zero.

DSS property name: Balanced, DSS property index: 36.

BaseFreq: float#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 46.

Bus1: str#

‘property(…)’

Bus to which the Generator is connected. May include specific node specification.

DSS property name: Bus1, DSS property index: 2.

Class: int#

‘property(…)’

An arbitrary integer number representing the class of Generator so that Generator values may be segregated by class.

DSS property name: Class, DSS property index: 17.

Close(terminal: int, phase: int) None#

Close the specified terminal and phase, if non-zero, or all conductors at the terminal.

Original COM help: https://opendss.epri.com/Close1.html

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Conn: altdss.enums.Connection#

‘property(…)’

={wye|LN|delta|LL}. Default is wye.

DSS property name: Conn, DSS property index: 15.

Conn_str: str#

‘property(…)’

={wye|LN|delta|LL}. Default is wye.

DSS property name: Conn, DSS property index: 15.

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

D: float#

‘property(…)’

Damping constant. Usual range is 0 to 4. Default is 1.0. Adjust to get damping

DSS property name: D, DSS property index: 29.

Daily: altdss.LoadShape.LoadShape#

‘property(…)’

Dispatch shape to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. If generator is assumed to be ON continuously, specify Status=FIXED, or designate a Loadshape object that is 1.0 per unit for all hours. Set to NONE to reset to no loadshape.

DSS property name: Daily, DSS property index: 11.

Daily_str: str#

‘property(…)’

Dispatch shape to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. If generator is assumed to be ON continuously, specify Status=FIXED, or designate a Loadshape object that is 1.0 per unit for all hours. Set to NONE to reset to no loadshape.

DSS property name: Daily, DSS property index: 11.

DebugTrace: bool#

‘property(…)’

{Yes | No } Default is no. Turn this on to capture the progress of the generator model for each iteration. Creates a separate file for each generator named “GEN_name.csv”.

DSS property name: DebugTrace, DSS property index: 35.

DispMode: altdss.enums.GeneratorDispatchMode#

‘property(…)’

{Default* | Loadlevel | Price } Default = Default. Dispatch mode. In default mode, gen is either always on or follows dispatch curve as specified. Otherwise, the gen comes on when either the global default load level (Loadshape “default”) or the price level exceeds the dispatch value.

DSS property name: DispMode, DSS property index: 13.

DispMode_str: str#

‘property(…)’

{Default* | Loadlevel | Price } Default = Default. Dispatch mode. In default mode, gen is either always on or follows dispatch curve as specified. Otherwise, the gen comes on when either the global default load level (Loadshape “default”) or the price level exceeds the dispatch value.

DSS property name: DispMode, DSS property index: 13.

DispValue: float#

‘property(…)’

Dispatch value. If = 0.0 (default) then Generator follow dispatch curves, if any. If > 0 then Generator is ON only when either the price signal (in Price dispatch mode) exceeds this value or the active circuit load multiplier * “default” loadshape value * the default yearly growth factor exceeds this value. Then the generator follows dispatch curves (duty, daily, or yearly), if any (see also Status).

DSS property name: DispValue, DSS property index: 14.

DisplayName: str#

‘property(…)’

Display name of the object (not necessarily unique)

Original COM help: https://opendss.epri.com/DisplayName.html

Duty: altdss.LoadShape.LoadShape#

‘property(…)’

Load shape to use for duty cycle dispatch simulations such as for wind generation. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr – perhaps, in seconds. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.

DSS property name: Duty, DSS property index: 12.

DutyStart: float#

‘property(…)’

Starting time offset [hours] into the duty cycle shape for this generator, defaults to 0

DSS property name: DutyStart, DSS property index: 34.

Duty_str: str#

‘property(…)’

Load shape to use for duty cycle dispatch simulations such as for wind generation. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr – perhaps, in seconds. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.

DSS property name: Duty, DSS property index: 12.

DynOut: List[str]#

‘property(…)’

The name of the variables within the Dynamic equation that will be used to govern the generator dynamics.This generator model requires 2 outputs from the dynamic equation:

  1. Shaft speed (velocity) relative to synchronous speed.

  2. Shaft, or power, angle (relative to synchronous reference frame).

The output variables need to be defined in tha strict order.

DSS property name: DynOut, DSS property index: 44.

DynamicEq: altdss.DynamicExp.DynamicExp#

‘property(…)’

The name of the dynamic equation (DynamicExp) that will be used for defining the dynamic behavior of the generator. if not defined, the generator dynamics will follow the built-in dynamic equation.

DSS property name: DynamicEq, DSS property index: 43.

DynamicEq_str: str#

‘property(…)’

The name of the dynamic equation (DynamicExp) that will be used for defining the dynamic behavior of the generator. if not defined, the generator dynamics will follow the built-in dynamic equation.

DSS property name: DynamicEq, DSS property index: 43.

Enabled: bool#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 47.

EnergyMeter() altdss.DSSObj.DSSObj#

Energy Meter this element is assigned to.

Requires an energy meter with an updated zone.

Original COM help: https://opendss.epri.com/EnergyMeter.html

EnergyMeterName() str#

Name of the Energy Meter this element is assigned to.

Requires an energy meter with an updated zone.

Original COM help: https://opendss.epri.com/EnergyMeter.html

ForceOn: bool#

‘property(…)’

{Yes | No} Forces generator ON despite requirements of other dispatch modes. Stays ON until this property is set to NO, or an internal algorithm cancels the forced ON state.

DSS property name: ForceOn, DSS property index: 22.

FuelkWh: float#

‘property(…)’

{*0}Is the nominal level of fuel for the generator (kWh). It only applies if UseFuel = Yes/True

DSS property name: FuelkWh, DSS property index: 39.

FullName() str#
GUID() str#

Object’s GUID/UUID. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

GetVariableValue(varIdxName: Union[AnyStr, int]) float#
H: float#

‘property(…)’

Per unit mass constant of the machine. MW-sec/MVA. Default is 1.0.

DSS property name: H, DSS property index: 28.

Handle() int#

Index of this element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() bool#

Returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() bool#

Returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() bool#

Returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() bool#

Returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

IsOpen(terminal: int, phase: int) bool#

Returns true if the specified terminal and phase are open.

If the phase parameter is zero, returns if any conductor at the terminal is open.

Like(value: AnyStr)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 48.

Losses() complex#

Total (complex) losses in the element, in VA (watts, vars)

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) float#

Returns the maximum current (magnitude) at the specified terminal. Use -1 as terminal to get the value across all terminals.

Maxkvar: float#

‘property(…)’

Maximum kvar limit for Model = 3. Defaults to twice the specified load kvar. Always reset this if you change PF or kvar properties.

DSS property name: Maxkvar, DSS property index: 19.

Minkvar: float#

‘property(…)’

Minimum kvar limit for Model = 3. Enter a negative number if generator can absorb vars. Defaults to negative of Maxkvar. Always reset this if you change PF or kvar properties.

DSS property name: Minkvar, DSS property index: 20.

Model: altdss.enums.GeneratorModel#

‘property(…)’

Integer code for the model to use for generation variation with voltage. Valid values are:

1:Generator injects a constant kW at specified power factor. 2:Generator is modeled as a constant admittance. 3:Const kW, constant kV. Somewhat like a conventional transmission power flow P-V generator. 4:Const kW, Fixed Q (Q never varies) 5:Const kW, Fixed Q(as a constant reactance) 6:Compute load injection from User-written Model.(see usage of Xd, Xdp) 7:Constant kW, kvar, but current-limited below Vminpu. Approximates a simple inverter. See also Balanced.

DSS property name: Model, DSS property index: 7.

property Name: str#
NodeOrder() altdss.types.Int32Array#

Array of integer containing the node numbers (representing phases, for example) for each conductor of each terminal.

Be sure to run a solution to initialize the values after the circuit is created or modified.

NodeRef() altdss.types.Int32Array#

Array of integers, a copy of the internal NodeRef of the CktElement.

Be sure to run a solution to initialize the values after the circuit is created or modified.

NumConductors() int#

Number of conductors per terminal

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() int#

Number of controllers connected to this device.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() int#

Number of phases

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() int#

Number of terminals in this circuit element

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() Union[altdss.DSSObj.DSSObj, None]#

Returns (as a Python object) the OCP device controlling this element, if any.

OCPDeviceIndex() int#

Index into controller list of OCP Device controlling this circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() dss.enums.OCPDevType#

Type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

Open(terminal: int, phase: int) None#

Open the specified terminal and phase, if non-zero, or all conductors at the terminal.

Original COM help: https://opendss.epri.com/Open1.html

PF: float#

‘property(…)’

Generator power factor. Default is 0.80. Enter negative for leading powerfactor (when kW and kvar have opposite signs.) A positive power factor for a generator signifies that the generator produces vars as is typical for a synchronous generator. Induction machines would be specified with a negative power factor.

DSS property name: PF, DSS property index: 5.

PVFactor: float#

‘property(…)’

Deceleration factor for P-V generator model (Model=3). Default is 0.1. If the circuit converges easily, you may want to use a higher number such as 1.0. Use a lower number if solution diverges. Use Debugtrace=yes to create a file that will trace the convergence of a generator model.

DSS property name: PVFactor, DSS property index: 21.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: int#

‘property(…)’

Number of Phases, this Generator. Power is evenly divided among phases.

DSS property name: Phases, DSS property index: 1.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal

Original COM help: https://opendss.epri.com/Powers.html

Refuel(value: bool = True, flags: altdss.enums.SetterFlags = 0)#

It is a boolean value (Yes/True, No/False) that can be used to manually refuel the generator when needed. It only applies if UseFuel = Yes/True

DSS property name: Refuel, DSS property index: 42.

RegisterNames() List[str]#

List of names of the energy meter registers for this element.

See also the enums EnergyMeterRegisters and GeneratorRegisters.

RegisterValues() altdss.types.Float64Array#

Array of values in this element’s energy meter registers.

Original COM help: https://opendss.epri.com/RegisterValues.html

RegistersDict() Dict[str, float]#

Convenience function: returns a dict of the element’s energy meter register names mapping to their current values.

Residuals() altdss.types.Float64Array#

Residual currents for each terminal: (magnitude, angle in degrees)

Original COM help: https://opendss.epri.com/Residuals.html

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

SetVariableValue(varIdxName: Union[AnyStr, int], value: float)#
ShaftData: str#

‘property(…)’

String (in quotes or parentheses) that gets passed to user-written shaft dynamic model for defining the data for that model.

DSS property name: ShaftData, DSS property index: 33.

ShaftModel: str#

‘property(…)’

Name of user-written DLL containing a Shaft model, which models the prime mover and determines the power on the shaft for Dynamics studies. Models additional mass elements other than the single-mass model in the DSS default model. Set to “none” to negate previous setting.

DSS property name: ShaftModel, DSS property index: 32.

Spectrum: altdss.Spectrum.Spectrum#

‘property(…)’

Name of harmonic voltage or current spectrum for this generator. Voltage behind Xd” for machine - default. Current injection for inverter. Default value is “default”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 45.

Spectrum_str: str#

‘property(…)’

Name of harmonic voltage or current spectrum for this generator. Voltage behind Xd” for machine - default. Current injection for inverter. Default value is “default”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 45.

Status: altdss.enums.GeneratorStatus#

‘property(…)’

={Fixed | Variable*}. If Fixed, then dispatch multipliers do not apply. The generator is alway at full power when it is ON. Default is Variable (follows curves).

DSS property name: Status, DSS property index: 16.

Status_str: str#

‘property(…)’

={Fixed | Variable*}. If Fixed, then dispatch multipliers do not apply. The generator is alway at full power when it is ON. Default is Variable (follows curves).

DSS property name: Status, DSS property index: 16.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at ALL terminals of the active circuit element.

Original COM help: https://opendss.epri.com/TotalPowers.html

UseFuel: bool#

‘property(…)’

{Yes | *No}. Activates the use of fuel for the operation of the generator. When the fuel level reaches the reserve level, the generator stops until it gets refueled. By default, the generator is connected to a continuous fuel supply, Use this mode to mimic dependency on fuel level for different generation technologies.

DSS property name: UseFuel, DSS property index: 38.

UserData: str#

‘property(…)’

String (in quotes or parentheses) that gets passed to user-written model for defining the data required for that model.

DSS property name: UserData, DSS property index: 31.

UserModel: str#

‘property(…)’

Name of DLL containing user-written model, which computes the terminal currents for Dynamics studies, overriding the default model. Set to “none” to negate previous setting.

DSS property name: UserModel, DSS property index: 30.

VMaxpu: float#

‘property(…)’

Default = 1.10. Maximum per unit voltage for which the Model is assumed to apply. Above this value, the load model reverts to a constant impedance model.

DSS property name: VMaxpu, DSS property index: 9.

VMinpu: float#

‘property(…)’

Default = 0.90. Minimum per unit voltage for which the Model is assumed to apply. Below this value, the load model reverts to a constant impedance model. For model 7, the current is limited to the value computed for constant power at Vminpu.

DSS property name: VMinpu, DSS property index: 8.

VariableNames() List[str]#
VariableValues() altdss.types.Float64Array#
VariablesDict() Dict[str, float]#
Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

Vpu: float#

‘property(…)’

Per Unit voltage set point for Model = 3 (typical power flow model). Default is 1.0.

DSS property name: Vpu, DSS property index: 18.

XRdp: float#

‘property(…)’

Default is 20. X/R ratio for Xdp property for FaultStudy and Dynamic modes.

DSS property name: XRdp, DSS property index: 37.

Xd: float#

‘property(…)’

Per unit synchronous reactance of machine. Presently used only for Thevenin impedance for power flow calcs of user models (model=6). Typically use a value 0.4 to 1.0. Default is 1.0

DSS property name: Xd, DSS property index: 25.

Xdp: float#

‘property(…)’

Per unit transient reactance of the machine. Used for Dynamics mode and Fault studies. Default is 0.27.For user models, this value is used for the Thevenin/Norton impedance for Dynamics Mode.

DSS property name: Xdp, DSS property index: 26.

Xdpp: float#

‘property(…)’

Per unit subtransient reactance of the machine. Used for Harmonics. Default is 0.20.

DSS property name: Xdpp, DSS property index: 27.

YPrim() altdss.types.ComplexArray#

YPrim matrix, column order, complex numbers

Original COM help: https://opendss.epri.com/Yprim.html

Yearly: altdss.LoadShape.LoadShape#

‘property(…)’

Dispatch shape to use for yearly simulations. Must be previously defined as a Loadshape object. If this is not specified, a constant value is assumed (no variation). If the generator is assumed to be ON continuously, specify Status=FIXED, or designate a curve that is 1.0 per unit at all times. Set to NONE to reset to no loadshape. Nominally for 8760 simulations. If there are fewer points in the designated shape than the number of points in the solution, the curve is repeated.

DSS property name: Yearly, DSS property index: 10.

Yearly_str: str#

‘property(…)’

Dispatch shape to use for yearly simulations. Must be previously defined as a Loadshape object. If this is not specified, a constant value is assumed (no variation). If the generator is assumed to be ON continuously, specify Status=FIXED, or designate a curve that is 1.0 per unit at all times. Set to NONE to reset to no loadshape. Nominally for 8760 simulations. If there are fewer points in the designated shape than the number of points in the solution, the curve is repeated.

DSS property name: Yearly, DSS property index: 10.

__hash__()#

Return hash(self).

__init__(api_util, ptr)#
__ne__(other)#

Return self!=value.

__repr__()#

Return repr(self).

begin_edit() None#

Marks a DSS object for editing

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Generator.GeneratorProperties]) altdss.Generator.Generator#

Edit this Generator.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS Edit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing state of a DSS object

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

kV: float#

‘property(…)’

Nominal rated (1.0 per unit) voltage, kV, for Generator. For 2- and 3-phase Generators, specify phase-phase kV. Otherwise, for phases=1 or phases>3, specify actual kV across each branch of the Generator. If wye (star), specify phase-neutral kV. If delta or phase-phase connected, specify phase-phase kV.

DSS property name: kV, DSS property index: 3.

kVA: float#

‘property(…)’

kVA rating of electrical machine. Defaults to 1.2* kW if not specified. Applied to machine or inverter definition for Dynamics mode solutions.

DSS property name: kVA, DSS property index: 23.

kW: float#

‘property(…)’

Total base kW for the Generator. A positive value denotes power coming OUT of the element, which is the opposite of a load. This value is modified depending on the dispatch mode. Unaffected by the global load multiplier and growth curves. If you want there to be more generation, you must add more generators or change this value.

DSS property name: kW, DSS property index: 4.

kvar: float#

‘property(…)’

Specify the base kvar. Alternative to specifying the power factor. Side effect: the power factor value is altered to agree based on present value of kW.

DSS property name: kvar, DSS property index: 6.

pctFuel: float#

‘property(…)’

It is a number between 0 and 100 representing the current amount of fuel available in percentage of FuelkWh. It only applies if UseFuel = Yes/True

DSS property name: %Fuel, DSS property index: 40.

pctReserve: float#

‘property(…)’

It is a number between 0 and 100 representing the reserve level in percentage of FuelkWh. It only applies if UseFuel = Yes/True

DSS property name: %Reserve, DSS property index: 41.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns an element’s data as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features.

By default (options = 0), only the properties explicitly set. The properties are returned in the order they are set in the input. As a reminder, OpenDSS is sensitive to the order of the properties.

The options bit-flags are available in the DSSJSONFlags enum. Values used by this function are:

  • Full: if set, all properties are returned, ordered by property index instead.

  • SkipRedundant: if used with Full, all properties except redundant and unused ones are returned.

  • EnumAsInt: enumerated properties are returned as integer values instead of strings.

  • FullNames: any element reference will use the full name ({class name}.{element name}) even if not required.

  • Pretty: more whitespace is used in the output for a “prettier” format.

  • SkipDSSClass: do not add the “DSSClass” property to the JSON objects.

NOT IMPLEMENTED YET:

  • State: include run-time state information

  • Debug: include debug information

Other bit-flags are reserved for future uses. Please use DSSJSONFlags enum to avoid potential conflicts.

(API Extension)

class altdss.Generator.GeneratorBatch(api_util, **kwargs)#

Bases: altdss.Batch.DSSBatch, altdss.CircuitElement.CircuitElementBatchMixin, altdss.PCElement.PCElementBatchMixin

Balanced: List[bool]#

‘property(…)’

{Yes | No*} Default is No. For Model=7, force balanced current only for 3-phase generators. Force zero- and negative-sequence to zero.

DSS property name: Balanced, DSS property index: 36.

BaseFreq: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 46.

Bus1: List[str]#

‘property(…)’

Bus to which the Generator is connected. May include specific node specification.

DSS property name: Bus1, DSS property index: 2.

Class: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

An arbitrary integer number representing the class of Generator so that Generator values may be segregated by class.

DSS property name: Class, DSS property index: 17.

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Conn: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

={wye|LN|delta|LL}. Default is wye.

DSS property name: Conn, DSS property index: 15.

Conn_str: List[str]#

‘property(…)’

={wye|LN|delta|LL}. Default is wye.

DSS property name: Conn, DSS property index: 15.

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

CurrentsMagAng() altdss.types.Float64Array#

Currents in magnitude, angle (degrees) format as a array of doubles.

Original COM help: https://opendss.epri.com/CurrentsMagAng.html

D: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Damping constant. Usual range is 0 to 4. Default is 1.0. Adjust to get damping

DSS property name: D, DSS property index: 29.

Daily: List[altdss.LoadShape.LoadShape]#

‘property(…)’

Dispatch shape to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. If generator is assumed to be ON continuously, specify Status=FIXED, or designate a Loadshape object that is 1.0 per unit for all hours. Set to NONE to reset to no loadshape.

DSS property name: Daily, DSS property index: 11.

Daily_str: List[str]#

‘property(…)’

Dispatch shape to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. If generator is assumed to be ON continuously, specify Status=FIXED, or designate a Loadshape object that is 1.0 per unit for all hours. Set to NONE to reset to no loadshape.

DSS property name: Daily, DSS property index: 11.

DebugTrace: List[bool]#

‘property(…)’

{Yes | No } Default is no. Turn this on to capture the progress of the generator model for each iteration. Creates a separate file for each generator named “GEN_name.csv”.

DSS property name: DebugTrace, DSS property index: 35.

DispMode: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

{Default* | Loadlevel | Price } Default = Default. Dispatch mode. In default mode, gen is either always on or follows dispatch curve as specified. Otherwise, the gen comes on when either the global default load level (Loadshape “default”) or the price level exceeds the dispatch value.

DSS property name: DispMode, DSS property index: 13.

DispMode_str: List[str]#

‘property(…)’

{Default* | Loadlevel | Price } Default = Default. Dispatch mode. In default mode, gen is either always on or follows dispatch curve as specified. Otherwise, the gen comes on when either the global default load level (Loadshape “default”) or the price level exceeds the dispatch value.

DSS property name: DispMode, DSS property index: 13.

DispValue: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Dispatch value. If = 0.0 (default) then Generator follow dispatch curves, if any. If > 0 then Generator is ON only when either the price signal (in Price dispatch mode) exceeds this value or the active circuit load multiplier * “default” loadshape value * the default yearly growth factor exceeds this value. Then the generator follows dispatch curves (duty, daily, or yearly), if any (see also Status).

DSS property name: DispValue, DSS property index: 14.

Duty: List[altdss.LoadShape.LoadShape]#

‘property(…)’

Load shape to use for duty cycle dispatch simulations such as for wind generation. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr – perhaps, in seconds. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.

DSS property name: Duty, DSS property index: 12.

DutyStart: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Starting time offset [hours] into the duty cycle shape for this generator, defaults to 0

DSS property name: DutyStart, DSS property index: 34.

Duty_str: List[str]#

‘property(…)’

Load shape to use for duty cycle dispatch simulations such as for wind generation. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr – perhaps, in seconds. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.

DSS property name: Duty, DSS property index: 12.

DynOut: List[List[str]]#

‘property(…)’

The name of the variables within the Dynamic equation that will be used to govern the generator dynamics.This generator model requires 2 outputs from the dynamic equation:

  1. Shaft speed (velocity) relative to synchronous speed.

  2. Shaft, or power, angle (relative to synchronous reference frame).

The output variables need to be defined in tha strict order.

DSS property name: DynOut, DSS property index: 44.

DynamicEq: List[altdss.DynamicExp.DynamicExp]#

‘property(…)’

The name of the dynamic equation (DynamicExp) that will be used for defining the dynamic behavior of the generator. if not defined, the generator dynamics will follow the built-in dynamic equation.

DSS property name: DynamicEq, DSS property index: 43.

DynamicEq_str: List[str]#

‘property(…)’

The name of the dynamic equation (DynamicExp) that will be used for defining the dynamic behavior of the generator. if not defined, the generator dynamics will follow the built-in dynamic equation.

DSS property name: DynamicEq, DSS property index: 43.

Enabled: List[bool]#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 47.

EnergyMeter() List[altdss.DSSObj.DSSObj]#
EnergyMeterName() List[str]#
ForceOn: List[bool]#

‘property(…)’

{Yes | No} Forces generator ON despite requirements of other dispatch modes. Stays ON until this property is set to NO, or an internal algorithm cancels the forced ON state.

DSS property name: ForceOn, DSS property index: 22.

FuelkWh: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

{*0}Is the nominal level of fuel for the generator (kWh). It only applies if UseFuel = Yes/True

DSS property name: FuelkWh, DSS property index: 39.

FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

GUID() List[str]#

GUID/UUID for each object. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

H: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit mass constant of the machine. MW-sec/MVA. Default is 1.0.

DSS property name: H, DSS property index: 28.

Handle() altdss.types.Int32Array#

Index of each element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() altdss.types.BoolArray#

For each element in the batch: returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() altdss.types.BoolArray#

For each element in the batch: returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 48.

Losses() altdss.types.ComplexArray#

For each element in the batch: total losses in the element, in VA (watts, vars).

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) altdss.types.Float64Array#

Returns the maximum current (magnitude) at the specified terminal for each element in this batch. Use -1 as terminal to get the value across all terminals.

Maxkvar: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Maximum kvar limit for Model = 3. Defaults to twice the specified load kvar. Always reset this if you change PF or kvar properties.

DSS property name: Maxkvar, DSS property index: 19.

Minkvar: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Minimum kvar limit for Model = 3. Enter a negative number if generator can absorb vars. Defaults to negative of Maxkvar. Always reset this if you change PF or kvar properties.

DSS property name: Minkvar, DSS property index: 20.

Model: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Integer code for the model to use for generation variation with voltage. Valid values are:

1:Generator injects a constant kW at specified power factor. 2:Generator is modeled as a constant admittance. 3:Const kW, constant kV. Somewhat like a conventional transmission power flow P-V generator. 4:Const kW, Fixed Q (Q never varies) 5:Const kW, Fixed Q(as a constant reactance) 6:Compute load injection from User-written Model.(see usage of Xd, Xdp) 7:Constant kW, kvar, but current-limited below Vminpu. Approximates a simple inverter. See also Balanced.

DSS property name: Model, DSS property index: 7.

property Name: List[str]#
NumConductors() altdss.types.Int32Array#

Number of conductors per terminal for each element in the batch.

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() altdss.types.Int32Array#

Number of controllers connected to each device in the batch.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() altdss.types.Int32Array#

Number of Phases for each element in this batch.

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() altdss.types.Int32Array#

Number of terminals for each Circuit Element in the batch.

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() List[Union[altdss.DSSObj.DSSObj, None]]#

Returns (as a list of Python objects) the OCP device controlling each element.

OCPDeviceIndex() altdss.types.Int32Array#

For each element in the batch: index into each controller list of the OCP Device controlling each circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() List[dss.enums.OCPDevType]#

For each element in the batch: type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

PF: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Generator power factor. Default is 0.80. Enter negative for leading powerfactor (when kW and kvar have opposite signs.) A positive power factor for a generator signifies that the generator produces vars as is typical for a synchronous generator. Induction machines would be specified with a negative power factor.

DSS property name: PF, DSS property index: 5.

PVFactor: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Deceleration factor for P-V generator model (Model=3). Default is 0.1. If the circuit converges easily, you may want to use a higher number such as 1.0. Use a lower number if solution diverges. Use Debugtrace=yes to create a file that will trace the convergence of a generator model.

DSS property name: PVFactor, DSS property index: 21.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of Phases, this Generator. Power is evenly divided among phases.

DSS property name: Phases, DSS property index: 1.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal, of each element in the batch.

Original COM help: https://opendss.epri.com/Powers.html

Refuel(value: Union[bool, List[bool]] = True, flags: altdss.enums.SetterFlags = 0)#

It is a boolean value (Yes/True, No/False) that can be used to manually refuel the generator when needed. It only applies if UseFuel = Yes/True

DSS property name: Refuel, DSS property index: 42.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

ShaftData: List[str]#

‘property(…)’

String (in quotes or parentheses) that gets passed to user-written shaft dynamic model for defining the data for that model.

DSS property name: ShaftData, DSS property index: 33.

ShaftModel: List[str]#

‘property(…)’

Name of user-written DLL containing a Shaft model, which models the prime mover and determines the power on the shaft for Dynamics studies. Models additional mass elements other than the single-mass model in the DSS default model. Set to “none” to negate previous setting.

DSS property name: ShaftModel, DSS property index: 32.

Spectrum: List[altdss.Spectrum.Spectrum]#

‘property(…)’

Name of harmonic voltage or current spectrum for this generator. Voltage behind Xd” for machine - default. Current injection for inverter. Default value is “default”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 45.

Spectrum_str: List[str]#

‘property(…)’

Name of harmonic voltage or current spectrum for this generator. Voltage behind Xd” for machine - default. Current injection for inverter. Default value is “default”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 45.

Status: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

={Fixed | Variable*}. If Fixed, then dispatch multipliers do not apply. The generator is alway at full power when it is ON. Default is Variable (follows curves).

DSS property name: Status, DSS property index: 16.

Status_str: List[str]#

‘property(…)’

={Fixed | Variable*}. If Fixed, then dispatch multipliers do not apply. The generator is alway at full power when it is ON. Default is Variable (follows curves).

DSS property name: Status, DSS property index: 16.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at all terminals of the circuit elements in this batch.

The resulting array is equivalent to concatenating the TotalPowers for each element.

UseFuel: List[bool]#

‘property(…)’

{Yes | *No}. Activates the use of fuel for the operation of the generator. When the fuel level reaches the reserve level, the generator stops until it gets refueled. By default, the generator is connected to a continuous fuel supply, Use this mode to mimic dependency on fuel level for different generation technologies.

DSS property name: UseFuel, DSS property index: 38.

UserData: List[str]#

‘property(…)’

String (in quotes or parentheses) that gets passed to user-written model for defining the data required for that model.

DSS property name: UserData, DSS property index: 31.

UserModel: List[str]#

‘property(…)’

Name of DLL containing user-written model, which computes the terminal currents for Dynamics studies, overriding the default model. Set to “none” to negate previous setting.

DSS property name: UserModel, DSS property index: 30.

VMaxpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 1.10. Maximum per unit voltage for which the Model is assumed to apply. Above this value, the load model reverts to a constant impedance model.

DSS property name: VMaxpu, DSS property index: 9.

VMinpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.90. Minimum per unit voltage for which the Model is assumed to apply. Below this value, the load model reverts to a constant impedance model. For model 7, the current is limited to the value computed for constant power at Vminpu.

DSS property name: VMinpu, DSS property index: 8.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

Vpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per Unit voltage set point for Model = 3 (typical power flow model). Default is 1.0.

DSS property name: Vpu, DSS property index: 18.

XRdp: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default is 20. X/R ratio for Xdp property for FaultStudy and Dynamic modes.

DSS property name: XRdp, DSS property index: 37.

Xd: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit synchronous reactance of machine. Presently used only for Thevenin impedance for power flow calcs of user models (model=6). Typically use a value 0.4 to 1.0. Default is 1.0

DSS property name: Xd, DSS property index: 25.

Xdp: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit transient reactance of the machine. Used for Dynamics mode and Fault studies. Default is 0.27.For user models, this value is used for the Thevenin/Norton impedance for Dynamics Mode.

DSS property name: Xdp, DSS property index: 26.

Xdpp: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit subtransient reactance of the machine. Used for Harmonics. Default is 0.20.

DSS property name: Xdpp, DSS property index: 27.

Yearly: List[altdss.LoadShape.LoadShape]#

‘property(…)’

Dispatch shape to use for yearly simulations. Must be previously defined as a Loadshape object. If this is not specified, a constant value is assumed (no variation). If the generator is assumed to be ON continuously, specify Status=FIXED, or designate a curve that is 1.0 per unit at all times. Set to NONE to reset to no loadshape. Nominally for 8760 simulations. If there are fewer points in the designated shape than the number of points in the solution, the curve is repeated.

DSS property name: Yearly, DSS property index: 10.

Yearly_str: List[str]#

‘property(…)’

Dispatch shape to use for yearly simulations. Must be previously defined as a Loadshape object. If this is not specified, a constant value is assumed (no variation). If the generator is assumed to be ON continuously, specify Status=FIXED, or designate a curve that is 1.0 per unit at all times. Set to NONE to reset to no loadshape. Nominally for 8760 simulations. If there are fewer points in the designated shape than the number of points in the solution, the curve is repeated.

DSS property name: Yearly, DSS property index: 10.

__call__()#
__getitem__(idx0) altdss.DSSObj.DSSObj#

Get element at 0-based index of the batch pointer array

__init__(api_util, **kwargs)#
__iter__()#
__len__() int#
batch(**kwargs) altdss.Batch.DSSBatch#

Filter a batch using integer or float DSS properties, returning a new batch.

For integers, provide a single value to match.

For floats, provide a range as a 2-valued tuple/list (min value, max value), or an exact value to value (not recommended).

Multiple properties can be listed to allow filtering various conditions.

Example for loads:

    # Create an initial batch using a regular expression
    abc_loads = altdss.Load.batch(re=r'^abc.*$') # a batch of all loads with names starting with "abc"
    abc_loads_filtered = abc_loads.batch(Class=1, Phases=1, kV=(0.1, 1.0))

    # Create an initial batch, already filtered
    abc_loads_filtered = altdss.Load.batch(re=r'^abc.*$', Class=1, Phases=1, kV=(0.1, 1.0))
begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Generator.GeneratorBatchProperties]) altdss.Generator.GeneratorBatch#

Edit this Generator batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

kV: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Nominal rated (1.0 per unit) voltage, kV, for Generator. For 2- and 3-phase Generators, specify phase-phase kV. Otherwise, for phases=1 or phases>3, specify actual kV across each branch of the Generator. If wye (star), specify phase-neutral kV. If delta or phase-phase connected, specify phase-phase kV.

DSS property name: kV, DSS property index: 3.

kVA: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

kVA rating of electrical machine. Defaults to 1.2* kW if not specified. Applied to machine or inverter definition for Dynamics mode solutions.

DSS property name: kVA, DSS property index: 23.

kW: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Total base kW for the Generator. A positive value denotes power coming OUT of the element, which is the opposite of a load. This value is modified depending on the dispatch mode. Unaffected by the global load multiplier and growth curves. If you want there to be more generation, you must add more generators or change this value.

DSS property name: kW, DSS property index: 4.

kvar: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Specify the base kvar. Alternative to specifying the power factor. Side effect: the power factor value is altered to agree based on present value of kW.

DSS property name: kvar, DSS property index: 6.

pctFuel: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

It is a number between 0 and 100 representing the current amount of fuel available in percentage of FuelkWh. It only applies if UseFuel = Yes/True

DSS property name: %Fuel, DSS property index: 40.

pctReserve: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

It is a number between 0 and 100 representing the reserve level in percentage of FuelkWh. It only applies if UseFuel = Yes/True

DSS property name: %Reserve, DSS property index: 41.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#
class altdss.Generator.GeneratorBatchProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

Balanced: bool#

None

BaseFreq: Union[float, altdss.types.Float64Array]#

None

Bus1: Union[AnyStr, List[AnyStr]]#

None

Class: Union[int, altdss.types.Int32Array]#

None

Conn: Union[AnyStr, int, altdss.enums.Connection, List[AnyStr], List[int], List[altdss.enums.Connection], altdss.types.Int32Array]#

None

D: Union[float, altdss.types.Float64Array]#

None

Daily: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

DebugTrace: bool#

None

DispMode: Union[AnyStr, int, altdss.enums.GeneratorDispatchMode, List[AnyStr], List[int], List[altdss.enums.GeneratorDispatchMode], altdss.types.Int32Array]#

None

DispValue: Union[float, altdss.types.Float64Array]#

None

Duty: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

DutyStart: Union[float, altdss.types.Float64Array]#

None

DynOut: List[AnyStr]#

None

DynamicEq: Union[AnyStr, altdss.DynamicExp.DynamicExp, List[AnyStr], List[altdss.DynamicExp.DynamicExp]]#

None

Enabled: bool#

None

ForceOn: bool#

None

FuelkWh: Union[float, altdss.types.Float64Array]#

None

H: Union[float, altdss.types.Float64Array]#

None

Like: AnyStr#

None

Maxkvar: Union[float, altdss.types.Float64Array]#

None

Minkvar: Union[float, altdss.types.Float64Array]#

None

Model: Union[int, altdss.enums.GeneratorModel, altdss.types.Int32Array]#

None

PF: Union[float, altdss.types.Float64Array]#

None

PVFactor: Union[float, altdss.types.Float64Array]#

None

Phases: Union[int, altdss.types.Int32Array]#

None

Refuel: bool#

None

ShaftData: Union[AnyStr, List[AnyStr]]#

None

ShaftModel: Union[AnyStr, List[AnyStr]]#

None

Spectrum: Union[AnyStr, altdss.Spectrum.Spectrum, List[AnyStr], List[altdss.Spectrum.Spectrum]]#

None

Status: Union[AnyStr, int, altdss.enums.GeneratorStatus, List[AnyStr], List[int], List[altdss.enums.GeneratorStatus], altdss.types.Int32Array]#

None

UseFuel: bool#

None

UserData: Union[AnyStr, List[AnyStr]]#

None

UserModel: Union[AnyStr, List[AnyStr]]#

None

VMaxpu: Union[float, altdss.types.Float64Array]#

None

VMinpu: Union[float, altdss.types.Float64Array]#

None

Vpu: Union[float, altdss.types.Float64Array]#

None

XRdp: Union[float, altdss.types.Float64Array]#

None

Xd: Union[float, altdss.types.Float64Array]#

None

Xdp: Union[float, altdss.types.Float64Array]#

None

Xdpp: Union[float, altdss.types.Float64Array]#

None

Yearly: Union[AnyStr, altdss.LoadShape.LoadShape, List[AnyStr], List[altdss.LoadShape.LoadShape]]#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

kV: Union[float, altdss.types.Float64Array]#

None

kVA: Union[float, altdss.types.Float64Array]#

None

kW: Union[float, altdss.types.Float64Array]#

None

keys()#

D.keys() -> a set-like object providing a view on D’s keys

kvar: Union[float, altdss.types.Float64Array]#

None

pctFuel: Union[float, altdss.types.Float64Array]#

None

pctReserve: Union[float, altdss.types.Float64Array]#

None

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values

class altdss.Generator.GeneratorProperties#

Bases: typing_extensions.TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

Balanced: bool#

None

BaseFreq: float#

None

Bus1: AnyStr#

None

Class: int#

None

Conn: Union[AnyStr, int, altdss.enums.Connection]#

None

D: float#

None

Daily: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

DebugTrace: bool#

None

DispMode: Union[AnyStr, int, altdss.enums.GeneratorDispatchMode]#

None

DispValue: float#

None

Duty: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

DutyStart: float#

None

DynOut: List[AnyStr]#

None

DynamicEq: Union[AnyStr, altdss.DynamicExp.DynamicExp]#

None

Enabled: bool#

None

ForceOn: bool#

None

FuelkWh: float#

None

H: float#

None

Like: AnyStr#

None

Maxkvar: float#

None

Minkvar: float#

None

Model: Union[int, altdss.enums.GeneratorModel]#

None

PF: float#

None

PVFactor: float#

None

Phases: int#

None

Refuel: bool#

None

ShaftData: AnyStr#

None

ShaftModel: AnyStr#

None

Spectrum: Union[AnyStr, altdss.Spectrum.Spectrum]#

None

Status: Union[AnyStr, int, altdss.enums.GeneratorStatus]#

None

UseFuel: bool#

None

UserData: AnyStr#

None

UserModel: AnyStr#

None

VMaxpu: float#

None

VMinpu: float#

None

Vpu: float#

None

XRdp: float#

None

Xd: float#

None

Xdp: float#

None

Xdpp: float#

None

Yearly: Union[AnyStr, altdss.LoadShape.LoadShape]#

None

__contains__()#

True if the dictionary has the specified key, else False.

__delattr__()#

Implement delattr(self, name).

__delitem__()#

Delete self[key].

__dir__()#

Default dir() implementation.

__format__()#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

__ge__()#

Return self>=value.

__getattribute__()#

Return getattr(self, name).

__getitem__()#

Return self[key].

__getstate__()#

Helper for pickle.

__gt__()#

Return self>value.

__init__()#

Initialize self. See help(type(self)) for accurate signature.

__ior__()#

Return self|=value.

__iter__()#

Implement iter(self).

__le__()#

Return self<=value.

__len__()#

Return len(self).

__lt__()#

Return self<value.

__ne__()#

Return self!=value.

__new__()#

Create and return a new object. See help(type) for accurate signature.

__or__()#

Return self|value.

__reduce__()#

Helper for pickle.

__reduce_ex__()#

Helper for pickle.

__repr__()#

Return repr(self).

__reversed__()#

Return a reverse iterator over the dict keys.

__ror__()#

Return value|self.

__setitem__()#

Set self[key] to value.

__sizeof__()#

D.sizeof() -> size of D in memory, in bytes

__str__()#

Return str(self).

__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.subclasscheck(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

clear()#

D.clear() -> None. Remove all items from D.

copy()#

D.copy() -> a shallow copy of D

get()#

Return the value for key if key is in the dictionary, else default.

items()#

D.items() -> a set-like object providing a view on D’s items

kV: float#

None

kVA: float#

None

kW: float#

None

keys()#

D.keys() -> a set-like object providing a view on D’s keys

kvar: float#

None

pctFuel: float#

None

pctReserve: float#

None

pop()#

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault()#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()#

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()#

D.values() -> an object providing a view on D’s values

class altdss.Generator.IGenerator(iobj)#

Bases: altdss.DSSObj.IDSSObj, altdss.Generator.GeneratorBatch

Balanced: List[bool]#

‘property(…)’

{Yes | No*} Default is No. For Model=7, force balanced current only for 3-phase generators. Force zero- and negative-sequence to zero.

DSS property name: Balanced, DSS property index: 36.

BaseFreq: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Base Frequency for ratings.

DSS property name: BaseFreq, DSS property index: 46.

Bus1: List[str]#

‘property(…)’

Bus to which the Generator is connected. May include specific node specification.

DSS property name: Bus1, DSS property index: 2.

Class: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

An arbitrary integer number representing the class of Generator so that Generator values may be segregated by class.

DSS property name: Class, DSS property index: 17.

ComplexSeqCurrents() altdss.types.ComplexArray#

Complex double array of Sequence Currents for all conductors of all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqCurrents.html

ComplexSeqVoltages() altdss.types.ComplexArray#

Complex double array of Sequence Voltage for all terminals of active circuit element.

Original COM help: https://opendss.epri.com/CplxSeqVoltages1.html

Conn: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

={wye|LN|delta|LL}. Default is wye.

DSS property name: Conn, DSS property index: 15.

Conn_str: List[str]#

‘property(…)’

={wye|LN|delta|LL}. Default is wye.

DSS property name: Conn, DSS property index: 15.

Currents() altdss.types.ComplexArray#

Complex array of currents into each conductor of each terminal

Original COM help: https://opendss.epri.com/Currents1.html

CurrentsMagAng() altdss.types.Float64Array#

Currents in magnitude, angle (degrees) format as a array of doubles.

Original COM help: https://opendss.epri.com/CurrentsMagAng.html

D: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Damping constant. Usual range is 0 to 4. Default is 1.0. Adjust to get damping

DSS property name: D, DSS property index: 29.

Daily: List[altdss.LoadShape.LoadShape]#

‘property(…)’

Dispatch shape to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. If generator is assumed to be ON continuously, specify Status=FIXED, or designate a Loadshape object that is 1.0 per unit for all hours. Set to NONE to reset to no loadshape.

DSS property name: Daily, DSS property index: 11.

Daily_str: List[str]#

‘property(…)’

Dispatch shape to use for daily simulations. Must be previously defined as a Loadshape object of 24 hrs, typically. If generator is assumed to be ON continuously, specify Status=FIXED, or designate a Loadshape object that is 1.0 per unit for all hours. Set to NONE to reset to no loadshape.

DSS property name: Daily, DSS property index: 11.

DebugTrace: List[bool]#

‘property(…)’

{Yes | No } Default is no. Turn this on to capture the progress of the generator model for each iteration. Creates a separate file for each generator named “GEN_name.csv”.

DSS property name: DebugTrace, DSS property index: 35.

DispMode: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

{Default* | Loadlevel | Price } Default = Default. Dispatch mode. In default mode, gen is either always on or follows dispatch curve as specified. Otherwise, the gen comes on when either the global default load level (Loadshape “default”) or the price level exceeds the dispatch value.

DSS property name: DispMode, DSS property index: 13.

DispMode_str: List[str]#

‘property(…)’

{Default* | Loadlevel | Price } Default = Default. Dispatch mode. In default mode, gen is either always on or follows dispatch curve as specified. Otherwise, the gen comes on when either the global default load level (Loadshape “default”) or the price level exceeds the dispatch value.

DSS property name: DispMode, DSS property index: 13.

DispValue: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Dispatch value. If = 0.0 (default) then Generator follow dispatch curves, if any. If > 0 then Generator is ON only when either the price signal (in Price dispatch mode) exceeds this value or the active circuit load multiplier * “default” loadshape value * the default yearly growth factor exceeds this value. Then the generator follows dispatch curves (duty, daily, or yearly), if any (see also Status).

DSS property name: DispValue, DSS property index: 14.

Duty: List[altdss.LoadShape.LoadShape]#

‘property(…)’

Load shape to use for duty cycle dispatch simulations such as for wind generation. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr – perhaps, in seconds. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.

DSS property name: Duty, DSS property index: 12.

DutyStart: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Starting time offset [hours] into the duty cycle shape for this generator, defaults to 0

DSS property name: DutyStart, DSS property index: 34.

Duty_str: List[str]#

‘property(…)’

Load shape to use for duty cycle dispatch simulations such as for wind generation. Must be previously defined as a Loadshape object. Typically would have time intervals less than 1 hr – perhaps, in seconds. Set Status=Fixed to ignore Loadshape designation. Set to NONE to reset to no loadshape. Designate the number of points to solve using the Set Number=xxxx command. If there are fewer points in the actual shape, the shape is assumed to repeat.

DSS property name: Duty, DSS property index: 12.

DynOut: List[List[str]]#

‘property(…)’

The name of the variables within the Dynamic equation that will be used to govern the generator dynamics.This generator model requires 2 outputs from the dynamic equation:

  1. Shaft speed (velocity) relative to synchronous speed.

  2. Shaft, or power, angle (relative to synchronous reference frame).

The output variables need to be defined in tha strict order.

DSS property name: DynOut, DSS property index: 44.

DynamicEq: List[altdss.DynamicExp.DynamicExp]#

‘property(…)’

The name of the dynamic equation (DynamicExp) that will be used for defining the dynamic behavior of the generator. if not defined, the generator dynamics will follow the built-in dynamic equation.

DSS property name: DynamicEq, DSS property index: 43.

DynamicEq_str: List[str]#

‘property(…)’

The name of the dynamic equation (DynamicExp) that will be used for defining the dynamic behavior of the generator. if not defined, the generator dynamics will follow the built-in dynamic equation.

DSS property name: DynamicEq, DSS property index: 43.

Enabled: List[bool]#

‘property(…)’

{Yes|No or True|False} Indicates whether this element is enabled.

DSS property name: Enabled, DSS property index: 47.

EnergyMeter() List[altdss.DSSObj.DSSObj]#
EnergyMeterName() List[str]#
ForceOn: List[bool]#

‘property(…)’

{Yes | No} Forces generator ON despite requirements of other dispatch modes. Stays ON until this property is set to NO, or an internal algorithm cancels the forced ON state.

DSS property name: ForceOn, DSS property index: 22.

FuelkWh: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

{*0}Is the nominal level of fuel for the generator (kWh). It only applies if UseFuel = Yes/True

DSS property name: FuelkWh, DSS property index: 39.

FullName() List[str]#

Returns the full name (including object type) for all objects in this batch

GUID() List[str]#

GUID/UUID for each object. Currently used only in the CIM-related methods.

Original COM help: https://opendss.epri.com/GUID.html

H: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit mass constant of the machine. MW-sec/MVA. Default is 1.0.

DSS property name: H, DSS property index: 28.

Handle() altdss.types.Int32Array#

Index of each element into the circuit’s element list.

Original COM help: https://opendss.epri.com/Handle.html

HasOCPDevice() altdss.types.BoolArray#

For each element in the batch: returns true if a recloser, relay, or fuse controlling the circuit element.

OCP = Overcurrent Protection

Original COM help: https://opendss.epri.com/HasOCPDevice.html

HasSwitchControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a SwtControl attached.

Original COM help: https://opendss.epri.com/HasSwitchControl.html

HasVoltControl() altdss.types.BoolArray#

For each element in the batch: returns true if the element has a CapControl or RegControl attached.

Original COM help: https://opendss.epri.com/HasVoltControl.html

IsIsolated() altdss.types.BoolArray#

For each element in the batch: returns true if the element is isolated. Note that this only fetches the current value. See also the Topology interface.

Like(value: AnyStr, flags: altdss.enums.SetterFlags = 0)#

Make like another object, e.g.:

New Capacitor.C2 like=c1 …

DSS property name: Like, DSS property index: 48.

Losses() altdss.types.ComplexArray#

For each element in the batch: total losses in the element, in VA (watts, vars).

Original COM help: https://opendss.epri.com/Losses1.html

MaxCurrent(terminal: int) altdss.types.Float64Array#

Returns the maximum current (magnitude) at the specified terminal for each element in this batch. Use -1 as terminal to get the value across all terminals.

Maxkvar: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Maximum kvar limit for Model = 3. Defaults to twice the specified load kvar. Always reset this if you change PF or kvar properties.

DSS property name: Maxkvar, DSS property index: 19.

Minkvar: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Minimum kvar limit for Model = 3. Enter a negative number if generator can absorb vars. Defaults to negative of Maxkvar. Always reset this if you change PF or kvar properties.

DSS property name: Minkvar, DSS property index: 20.

Model: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Integer code for the model to use for generation variation with voltage. Valid values are:

1:Generator injects a constant kW at specified power factor. 2:Generator is modeled as a constant admittance. 3:Const kW, constant kV. Somewhat like a conventional transmission power flow P-V generator. 4:Const kW, Fixed Q (Q never varies) 5:Const kW, Fixed Q(as a constant reactance) 6:Compute load injection from User-written Model.(see usage of Xd, Xdp) 7:Constant kW, kvar, but current-limited below Vminpu. Approximates a simple inverter. See also Balanced.

DSS property name: Model, DSS property index: 7.

property Name: List[str]#
NumConductors() altdss.types.Int32Array#

Number of conductors per terminal for each element in the batch.

Original COM help: https://opendss.epri.com/NumConductors.html

NumControllers() altdss.types.Int32Array#

Number of controllers connected to each device in the batch.

Original COM help: https://opendss.epri.com/NumControls.html

NumPhases() altdss.types.Int32Array#

Number of Phases for each element in this batch.

Original COM help: https://opendss.epri.com/NumPhases.html

NumTerminals() altdss.types.Int32Array#

Number of terminals for each Circuit Element in the batch.

Original COM help: https://opendss.epri.com/NumTerminals.html

OCPDevice() List[Union[altdss.DSSObj.DSSObj, None]]#

Returns (as a list of Python objects) the OCP device controlling each element.

OCPDeviceIndex() altdss.types.Int32Array#

For each element in the batch: index into each controller list of the OCP Device controlling each circuit element

Original COM help: https://opendss.epri.com/OCPDevIndex.html

OCPDeviceType() List[dss.enums.OCPDevType]#

For each element in the batch: type of OCP controller device

Original COM help: https://opendss.epri.com/OCPDevType.html

PF: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Generator power factor. Default is 0.80. Enter negative for leading powerfactor (when kW and kvar have opposite signs.) A positive power factor for a generator signifies that the generator produces vars as is typical for a synchronous generator. Induction machines would be specified with a negative power factor.

DSS property name: PF, DSS property index: 5.

PVFactor: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Deceleration factor for P-V generator model (Model=3). Default is 0.1. If the circuit converges easily, you may want to use a higher number such as 1.0. Use a lower number if solution diverges. Use Debugtrace=yes to create a file that will trace the convergence of a generator model.

DSS property name: PVFactor, DSS property index: 21.

PhaseLosses() altdss.types.ComplexArray#

Complex array of losses (kVA) by phase

Original COM help: https://opendss.epri.com/PhaseLosses.html

Phases: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

Number of Phases, this Generator. Power is evenly divided among phases.

DSS property name: Phases, DSS property index: 1.

Powers() altdss.types.ComplexArray#

Complex array of powers (kVA) into each conductor of each terminal, of each element in the batch.

Original COM help: https://opendss.epri.com/Powers.html

Refuel(value: Union[bool, List[bool]] = True, flags: altdss.enums.SetterFlags = 0)#

It is a boolean value (Yes/True, No/False) that can be used to manually refuel the generator when needed. It only applies if UseFuel = Yes/True

DSS property name: Refuel, DSS property index: 42.

SeqCurrents() altdss.types.Float64Array#

Array of symmetrical component currents (magnitudes only) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqCurrents.html

SeqPowers() altdss.types.ComplexArray#

Complex array of sequence powers (kW, kvar) into each 3-phase terminal of each element

Original COM help: https://opendss.epri.com/SeqPowers.html

SeqVoltages() altdss.types.Float64Array#

Double array of symmetrical component voltages (magnitudes only) at each 3-phase terminal

Original COM help: https://opendss.epri.com/SeqVoltages1.html

ShaftData: List[str]#

‘property(…)’

String (in quotes or parentheses) that gets passed to user-written shaft dynamic model for defining the data for that model.

DSS property name: ShaftData, DSS property index: 33.

ShaftModel: List[str]#

‘property(…)’

Name of user-written DLL containing a Shaft model, which models the prime mover and determines the power on the shaft for Dynamics studies. Models additional mass elements other than the single-mass model in the DSS default model. Set to “none” to negate previous setting.

DSS property name: ShaftModel, DSS property index: 32.

Spectrum: List[altdss.Spectrum.Spectrum]#

‘property(…)’

Name of harmonic voltage or current spectrum for this generator. Voltage behind Xd” for machine - default. Current injection for inverter. Default value is “default”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 45.

Spectrum_str: List[str]#

‘property(…)’

Name of harmonic voltage or current spectrum for this generator. Voltage behind Xd” for machine - default. Current injection for inverter. Default value is “default”, which is defined when the DSS starts.

DSS property name: Spectrum, DSS property index: 45.

Status: altdss.ArrayProxy.BatchInt32ArrayProxy#

‘property(…)’

={Fixed | Variable*}. If Fixed, then dispatch multipliers do not apply. The generator is alway at full power when it is ON. Default is Variable (follows curves).

DSS property name: Status, DSS property index: 16.

Status_str: List[str]#

‘property(…)’

={Fixed | Variable*}. If Fixed, then dispatch multipliers do not apply. The generator is alway at full power when it is ON. Default is Variable (follows curves).

DSS property name: Status, DSS property index: 16.

TotalPowers() altdss.types.ComplexArray#

Returns an array with the total powers (complex, kVA) at all terminals of the circuit elements in this batch.

The resulting array is equivalent to concatenating the TotalPowers for each element.

UseFuel: List[bool]#

‘property(…)’

{Yes | *No}. Activates the use of fuel for the operation of the generator. When the fuel level reaches the reserve level, the generator stops until it gets refueled. By default, the generator is connected to a continuous fuel supply, Use this mode to mimic dependency on fuel level for different generation technologies.

DSS property name: UseFuel, DSS property index: 38.

UserData: List[str]#

‘property(…)’

String (in quotes or parentheses) that gets passed to user-written model for defining the data required for that model.

DSS property name: UserData, DSS property index: 31.

UserModel: List[str]#

‘property(…)’

Name of DLL containing user-written model, which computes the terminal currents for Dynamics studies, overriding the default model. Set to “none” to negate previous setting.

DSS property name: UserModel, DSS property index: 30.

VMaxpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 1.10. Maximum per unit voltage for which the Model is assumed to apply. Above this value, the load model reverts to a constant impedance model.

DSS property name: VMaxpu, DSS property index: 9.

VMinpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default = 0.90. Minimum per unit voltage for which the Model is assumed to apply. Below this value, the load model reverts to a constant impedance model. For model 7, the current is limited to the value computed for constant power at Vminpu.

DSS property name: VMinpu, DSS property index: 8.

Voltages() altdss.types.ComplexArray#

Complex array of voltages at terminals

Original COM help: https://opendss.epri.com/Voltages1.html

VoltagesMagAng() altdss.types.Float64Array#

Voltages at each conductor in magnitude, angle form as array of doubles.

Original COM help: https://opendss.epri.com/VoltagesMagAng.html

Vpu: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per Unit voltage set point for Model = 3 (typical power flow model). Default is 1.0.

DSS property name: Vpu, DSS property index: 18.

XRdp: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Default is 20. X/R ratio for Xdp property for FaultStudy and Dynamic modes.

DSS property name: XRdp, DSS property index: 37.

Xd: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit synchronous reactance of machine. Presently used only for Thevenin impedance for power flow calcs of user models (model=6). Typically use a value 0.4 to 1.0. Default is 1.0

DSS property name: Xd, DSS property index: 25.

Xdp: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit transient reactance of the machine. Used for Dynamics mode and Fault studies. Default is 0.27.For user models, this value is used for the Thevenin/Norton impedance for Dynamics Mode.

DSS property name: Xdp, DSS property index: 26.

Xdpp: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Per unit subtransient reactance of the machine. Used for Harmonics. Default is 0.20.

DSS property name: Xdpp, DSS property index: 27.

Yearly: List[altdss.LoadShape.LoadShape]#

‘property(…)’

Dispatch shape to use for yearly simulations. Must be previously defined as a Loadshape object. If this is not specified, a constant value is assumed (no variation). If the generator is assumed to be ON continuously, specify Status=FIXED, or designate a curve that is 1.0 per unit at all times. Set to NONE to reset to no loadshape. Nominally for 8760 simulations. If there are fewer points in the designated shape than the number of points in the solution, the curve is repeated.

DSS property name: Yearly, DSS property index: 10.

Yearly_str: List[str]#

‘property(…)’

Dispatch shape to use for yearly simulations. Must be previously defined as a Loadshape object. If this is not specified, a constant value is assumed (no variation). If the generator is assumed to be ON continuously, specify Status=FIXED, or designate a curve that is 1.0 per unit at all times. Set to NONE to reset to no loadshape. Nominally for 8760 simulations. If there are fewer points in the designated shape than the number of points in the solution, the curve is repeated.

DSS property name: Yearly, DSS property index: 10.

__call__()#
__contains__(name: str) bool#
__getitem__(name_or_idx)#
__init__(iobj)#
__iter__()#
__len__() int#
batch(**kwargs)#

Creates a new batch handler of (existing) objects

batch_new(names: Optional[List[AnyStr]] = None, *, df=None, count: Optional[int] = None, begin_edit: Optional[bool] = None, **kwargs: typing_extensions.Unpack[altdss.Generator.GeneratorBatchProperties]) altdss.Generator.GeneratorBatch#

Creates a new batch of Generator objects

Either names, count or df is required.

Parameters:
  • begin_edit – The argument begin_edit indicates if the user want to leave the elements in the edit state, and requires a call to end_edit() or equivalent. The default begin_edit is set to None. With None, the behavior will be adjusted according the default of how the batch is created.

  • **kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

  • names – When using a list of names, each new object will match the names from this list. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • count – When using count, new objects will be created with based on a random prefix, with an increasing integer up to count. begin_edit defaults to True if no arguments for properties were passed, False otherwise.

  • df – Currently EXPERIMENTAL AND LIMITED, tries to get the columns from a dataframe to populate the names and the DSS properties. begin_edit defaults to False.

Returns:

Returns the new batch of DSS objects, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

begin_edit() None#

Marks for editing all DSS objects in the batch

In the editing mode, some final side-effects of changing properties are postponed until end_edit is called. This side-effects can be somewhat costly, like updating the model parameters or internal matrices.

If you don’t have any performance constraint, you may edit each property individually without worrying about using begin_edit and end_edit. For convenience, those are emitted automatically when editing single properties outside an edit block.

edit(**kwargs: typing_extensions.Unpack[altdss.Generator.GeneratorBatchProperties]) altdss.Generator.GeneratorBatch#

Edit this Generator batch.

This method will try to open a new edit context (if not already open), edit the properties, and finalize the edit context for objects in the batch. It can be seen as a shortcut to manually setting each property, or a Pythonic analogous (but extended) to the DSS BatchEdit command.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the objects.

Returns:

Returns itself to allow call chaining.

end_edit(num_changes: int = 1) None#

Leaves the editing states of all DSS objects in the batch

num_changes is required for a few classes to correctly match the official OpenDSS behavior and must be the number of properties modified in the current editing block. As of DSS C-API v0.13, this is only required for the Monitor class, when the Action property is used with the Process value.

find(name_or_idx: Union[AnyStr, int]) altdss.DSSObj.DSSObj#

Returns an object from the collection by name or index; the index must be zero-based.

kV: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Nominal rated (1.0 per unit) voltage, kV, for Generator. For 2- and 3-phase Generators, specify phase-phase kV. Otherwise, for phases=1 or phases>3, specify actual kV across each branch of the Generator. If wye (star), specify phase-neutral kV. If delta or phase-phase connected, specify phase-phase kV.

DSS property name: kV, DSS property index: 3.

kVA: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

kVA rating of electrical machine. Defaults to 1.2* kW if not specified. Applied to machine or inverter definition for Dynamics mode solutions.

DSS property name: kVA, DSS property index: 23.

kW: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Total base kW for the Generator. A positive value denotes power coming OUT of the element, which is the opposite of a load. This value is modified depending on the dispatch mode. Unaffected by the global load multiplier and growth curves. If you want there to be more generation, you must add more generators or change this value.

DSS property name: kW, DSS property index: 4.

kvar: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

Specify the base kvar. Alternative to specifying the power factor. Side effect: the power factor value is altered to agree based on present value of kW.

DSS property name: kvar, DSS property index: 6.

new(name: AnyStr, *, begin_edit: Optional[bool] = None, activate=False, **kwargs: typing_extensions.Unpack[altdss.Generator.GeneratorProperties]) altdss.Generator.Generator#

Creates a new Generator.

Parameters:
  • name – The object’s name is a required positional argument.

  • activate – Activation (setting activate to true) is useful for integration with the classic API, and some internal OpenDSS commands. If you interact with this object only via the Alt API, no need to activate it (due to performance costs).

  • begin_edit – This controls how the edit context is left after the object creation:

  • True: The object will be left in the edit state, requiring an end_edit call or equivalent.

  • False: No edit context is started.

  • None: If no properties are passed as keyword arguments, the object will be left in the edit state (assumes the user will fill the properties from Python attributes). Otherwise, the internal edit context will be finalized.

Parameters:

**kwargs – Pass keyword arguments equivalent to the DSS properties of the object.

Returns:

Returns the new DSS object, wrapped in Python.

Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.

pctFuel: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

It is a number between 0 and 100 representing the current amount of fuel available in percentage of FuelkWh. It only applies if UseFuel = Yes/True

DSS property name: %Fuel, DSS property index: 40.

pctReserve: altdss.ArrayProxy.BatchFloat64ArrayProxy#

‘property(…)’

It is a number between 0 and 100 representing the reserve level in percentage of FuelkWh. It only applies if UseFuel = Yes/True

DSS property name: %Reserve, DSS property index: 41.

to_json(options: Union[int, dss.enums.DSSJSONFlags] = 0)#

Returns the data (as a list) of the elements in a batch as a JSON-encoded string.

The options parameter contains bit-flags to toggle specific features. See Obj_ToJSON (C-API) for more, or DSSObj.to_json in Python.

Additionally, the ExcludeDisabled flag can be used to excluded disabled elements from the output.

to_list()#